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INTRODUCTION

The current Big Data era implies the presence of vast and intricate amounts of data that cannot be ana-
lyzed with traditional tools and analysis techniques (Gandomi A, et al., 2015). Between these data, we 
can find those related to biomedicine, which can be used for synthesis and compound selection in the 
discovery and design of drugs (Kim S, et al., 2021). Some examples of these databases include Chem-
Spider (more than 26 million registered molecules), ChEMBL (data on bioactive molecules and their 
pharmacological properties), ZINC (commercial chemical compounds especially prepared for virtual 
screening), BindingDB (intermolecular binding data such as protein-ligand interactions) and Protein 
Data Bank (PDB) (protein and nucleic acid tridimensional structures).

The high throughput screening (HTS) has been one of the most important processes in the discovery 
of biologically active molecules (Pinzi L, et al., 2019). Improved computational techniques used for 
HTS, such as artificial intelligence (AI) and machine learning (ML), also contribute to improved data 
management by accelerating and refining the process (Gupta R, et al., 2021). Another relevant process 
in the search for new drugs, and that AI and ML techniques (along with databases such as PDB) have 
helped to optimize, is the determination of target molecules. Predicting and identifying the drug-target 
interaction (DTI) is a crucial step in the discovery and design of new drugs, as it reduces the costs of 
experimental validation (Thafar MA, et al., 2021). The new drugs are designed based on the analysis 
and observation of the binding of ligands to the three-dimensional structure of molecules such as amino 
acids and their sequences, proteins, DNA or RNA (Robichaux JP, et al., 2021). This translates into faster 
discovery of effective drugs, with a higher success rate and a reduction in computational costs related 
to traditional methods, such as molecular docking or virtual screening (VS) (Gupta R, et al., 2021). An 
example of this is found in recent studies on computational analysis for the identification of effective 
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drugs against the SARS-CoV-2 coronavirus, where active molecules against this pathogen were identi-
fied (Pérez-Moraga R, et al., 2021).

Another interesting factor in the design and discovery of drugs is the development of relationships 
between chemical structures and their physicochemical properties with biological activities. Mathemati-
cal prediction models, which characterize the structural, physical, chemical, and biological properties of 
molecules, have become an essential tool for this issue, becoming the key to the success of ML models 
targeting both drug design and repurposing (Suay-Garcia B, et al., 2020a). Drug repositioning is the 
generation of new clinical opportunities for molecules already known and/or approved, providing a new 
therapeutic indication different from the usual one (Suay-Garcia B, et al., 2019). The repositioning of 
drugs that have undergone extensive toxicological and pharmacological analysis is an effective method 
to reduce the time, cost, and risks of de novo synthesis, moving directly to preclinical testing and clini-
cal trials (Liu Y, et al., 2021) (Figure 1). This method has proven useful for identifying a new clinical 
use against different diseases in molecules already known or commercialized (Suay-Garcia B, et al., 
2020b). In addition, new molecules have been detected through in silico homology studies that could 
be reused as lead compounds from which to obtain new molecules with greater efficiency (Troeman 
DPR, et al., 2019). An important feature of this method is that it can re-evaluate molecules considered 
as failed in previous studies, adding value to a lost investment by providing new indications for these 
drugs (Natalie KB, et al., 2021). In addition, trials that can be conducted by repositioning drugs could 
reveal new therapeutic targets and improve knowledge of known therapies.

Figure 1. Phase and time difference between drug development from de novo synthesis and the drug 
repurposing method. Created with BioRender.com
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In vitro or in vivo experiments aimed at drug repurposing need a lot of time and work. In silico ap-
proaches, can study and calculate structures, properties, dimensions and geometries of target molecules. 
These can be combined with drug repurposing, becoming a methodology capable of providing new 
therapeutic approaches to molecules already known in a fast, effective, and economical way compared to 
other strategies (Tarín-Pelló A, et al., 2022). This combination consists of collecting data and preprocess-
ing it to generate the computational model. Subsequently, from the existing literature, proofs of concept 
are generated and used for the evaluation of models through cross-validation, case analysis and metrics 
evaluation. Finally, validation of repurposed drugs is performed through clinical trials and in vitro and 
in vivo studies (Gupta R, et al., 2021). This sum of methods represents a great improvement in terms of 
economic savings and speed in the discovery and development of new drugs (Meng Z, et al., 2020). In 
this sense, one of the most relevant lines of research of our era is the search for new antimicrobials, due 
to the progressive increase of bacteria that are multiresistant to the current therapeutic arsenal.

In the literature there are many ML techniques based on similarity calculation, matrix factorization, 
network models, feature vectors and deep learning (DL) models for DTI prediction (Islam SM, et al., 
2021). Therefore, the aim of this review is to present the different types of mathematical prediction 
models that have been used to develop new antimicrobials or repurpose drugs without known antibiotic 
activity as antibiotics. In this way, it is intended to prove the effectiveness of the combination of these 
two strategies to provide new therapeutic opportunities against various diseases with the databases that 
are currently presented.

BACKGROUND

Antimicrobial resistance has become one of the top 10 threats facing humanity worldwide (World Health 
Organization (WHO), 2016). WHO has been warning since 2016 that antimicrobial resistance (AMR) 
could cause 10 million deaths by 2050 if an early solution is not found (PhRMA, 2021). This figure 
would exceed those reached by diseases such as cancer and diabetes or traffic accidents and is equivalent 
to populations of countries such as Sweden, the Czech Republic, Greece, or Portugal (Eurostat, 2021). 
The most recent data can be found in the analysis by Murray et al. where they indicate that in 2019 the 
global burden of deaths associated with drug-resistant infections evaluated in 88 pathogen-antimicrobial 
combinations was approximately 4.95 million, of which 1.27 million could have been avoided if the 
pathogens had been sensitive to available antimicrobial treatments (Murray et al., 2022). In 2017, WHO 
published a list of pathogens of global priority and classified these microorganisms as critical, high 
and medium priority bacteria depending on the urgency there is to find new antibiotics against them 
(WHO, 2017). Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, and Myco-
bacterium tuberculosis are examples of pathogens that present high resistance to the available treatment 
options (Terreni M, et al., 2021, European Centre for Disease Prevention and Control (ECDC), 2015). 
The complicated health situation we face has pushed researchers to prioritize the search for alternative 
or complementary therapies to antimicrobials (Gutiérrez R, et al., 2021). We currently find studies on 
alternative antimicrobial therapies to the traditional antimicrobial therapy (Table 1). However, these 
therapies still require clinical trials to ensure their safety and efficacy, remaining as complementary 
treatments to antimicrobials (Shang Z, et al., 2020).
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Table 1. List of alternative therapies to antibiotics. Adaptaded from: Tarín-Pelló, A. et al.,2022

Examples General 
characteristics Advantages Structures References

Monoclonal 
antibodies

17H12, 8F12, 
2C7, SA-13, SA-
15 and SA-17.

Application of 
antibodies that 
specifically target 
the external 
antigens of the 
pathogen.

Specific strategy 
without adverse 
effects on the 
body’s microbiota. 
Reduction of the 
development of 
resistances.

Gulati S, et al., 
2019  
Diago-Navarro 
E, et al., 2018 

Antimicrobial 
Peptides (AMP)

Thyrotricin, 
gramicidine, 
teixobactin.

Oligomers that 
target the bacterial 
membrane or 
intracellular 
components 
performing an 
antibacterial effect.

They do not interact 
with specific targets, 
slowing down 
the emergence of 
resistances.

van Gent ME, 
et al. 2021
Pacios O, et al. 
2020 
Vila J, et al., 
2020 

Nanoparticles 
(NP)

AgNP, AuNP, 
ZnONP, 
TiO2NP.

Small particles 
that can penetrate 
eukaryotic cells and 
target intracellular 
pathogens. 

They have versatility 
in the loading 
and adaptability 
of the drug and 
adequate stability 
in physiological 
fluids. Improving 
the effectiveness of 
the drug and slowing 
down the emergence 
of resistance. 

de Dicastillo 
CL, et al., 2019 
Tiwari V, et al., 
2018  
Kumar R, et al., 
2016  
Morones-
Ramirez JR, et 
al., 2013 

Combination 
therapy

MCB3681, 
cadazolid, 
zaviceft.

Combination 
of molecules 
(antibiotics or 
not) that have an 
antibiotic effect.

Improving the 
effectiveness of 
current antibiotics. 
Better toxicity 
profile and efficacy 
of the molecules 
involved. Decrease 
in the appearance of 
resistance.

Bradley JS, et 
al., 2019 
Shapiro S., 
2013

Microbiota 
therapy

Fecal microbiota 
transplant, 
modified E. coli 
strains.

Administration 
of beneficial 
microorganisms for 
the reestablishment 
of a healthy 
microbiota. 

Antimicrobial effect, 
immunostimulant 
effect and 
improvement of the 
barrier function of the 
body’s tissue. Low 
chances of emergence 
of resistances. 
Harmless to the 
human microbiota.

Hwang IY, et 
al., 2017 
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Due to the lack of alternatives to these drugs, the search for new antibiotics becomes the only way to 
alleviate this health crisis (Tarín-Pelló A, et al., 2022). De novo synthesis is the most widely used strategy 
for the search for new drugs, including antibiotics. Unfortunately, in the last two decades, the economic 
and time investment in the development of new antimicrobials has been a setback in the pharmaceuti-
cal industry (Hamet P, et al., 2017), because it is a slow procedure, with low success rates in terms of 
pharmacokinetic parameters, safety profiles and compound stability (Knoblauch R, et al., 2020). This 
is because drug discovery and design comprise long and complex phases, such as target selection and 
validation, therapeutic detection and seeding optimization, preclinical and clinical trials, and manufac-
turing processes. All these steps present two major challenges for the pharmaceutical industry. First, the 
identification of effective antibiotics, and second, the management of the costs and speed of the entire 
process (Zhang D, et al., 2017). Traditional computational approaches, despite having managed to reduce 
these problems, turn out to be inaccurate and deficient techniques (Hassanzadeh P, et al., 2019). The 
implementation of novel techniques allows overcoming problems and obstacles in the process of drug 
design and discovery, in addition to improving the management of the immense information provided 
by complex biomedical databases (Duch W, et al., 2007). This fast and relatively simple processing 
capacity leads us to the potential of this methodology to improve the drug repositioning strategy, which 
shares with computational models the advantage of reducing the costs and development periods of de 
novo synthesis because characteristics of these drugs such as mechanism of action, dose and toxicologi-
cal profile are already known (Ohmoto A, et al., 2021). In fact, the success rate of the drug repurposing 
method accounts for nearly 30% of all the new drugs approved by the FDA (Ashburn TT, et al., 2004). 
There are countless examples of drug repositioning that have been a success for medicine, such as fin-

Table 1. Continued

Examples General 
characteristics Advantages Structures References

Phagotherapy ΦRGNndm-1 and 
ΦRGNshv-18.

Application of 
bacteriophages that 
target and penetrate 
pathogenic bacteria.

Specificity. Harmless 
to eukaryotic cells. 
Effectiveness in 
the eradication 
of biofilms. 
Improvement of 
the effectiveness of 
antibiotics.

Citorik RJ, et 
al., 2014

Antivirulent 
therapy

Thioridazine, 
verapamil, and 
closantel.

Drug interaction in 
targets not essential 
for the pathogenic 
microorganism.

Improvement of 
current antibiotic 
treatments. Ability 
to decrease virulence 
and the appearance of 
resistance.

Rodrigues L, et 
al., 2020
Rajamuthiah R, 
et al., 2015a 
Rajamuthiah R, 
et al., 2015b
Rajamuthiah R, 
et al., 2014 
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asteride, thalidomide, sildenafil, metformin, and hydroxychloroquine (Barbarossa A, et al., 2022). Table 
2 contains a compilation of studies that have described antimicrobial effects on drugs originally used 
for another indication in the usual therapeutics.

Table 2. Drugs studied by in vitro methods that have demonstrated antimicrobial properties. Adapted 
from: Barbarossa A, et al., 2022.

Molecules Class of drug Structures References

Acetylsalicylic acid NSAID* Rosato A, et al., 2016

Diclofenac NSAID*
Rosato A, et al., 2016
Rosato A, et al., 2021
Ferrer-Luque CM, et al., 2021

Ibuprofen NSAID* Chen H, et al., 2018
Pereira AKDS, et al., 2020

Continued on following page
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Table 2. Continued

Molecules Class of drug Structures References

Celecoxib NSAID* Mortensen R, et al., 2019

Sertraline Antidepressant
Ayaz M, et al., 2015
Gowri M, et al., 2020
Krzyżek P, et al., 2019

Fluoxetine Antidepressant
Hadera M, et al., 2018
Karine de Sousa A, et al., 2018
Foletto VS, et al., 2020

Paroxetine Antidepressant Foletto VS, et al., 2020

Continued on following page
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Table 2. Continued

Molecules Class of drug Structures References

Amitriptyline Antidepressant de S. Machado C, et al., 2020

Thioridazine Antipsychotic Ruth MM, et al., 2020
Tozar T, et al., 2019

Chlorpromazine Antipsychotic Nistorescu S, et al., 2020

Atorvastatin Statin Masadeh M, et al., 2012
Sarkeshikian SS, et al., 2020

Continued on following page
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Table 2. Continued

Molecules Class of drug Structures References

Simvastatin Statin

Masadeh et al., 2012
Graziano et al., 2015
Ko et al., 2018
Akbarzadeh et al., 2021
Fan et al., 2020
Figueiredo et al., 2019
Rampelotto et al., 2018

Rosuvastatin Statin Masadeh M, et al., 2012

Pitavastatin Statin Ko HHT, et al., 2018

Auranofin Antirheumatic Cassetta MI, et al., 2014

Niclosamide Antihelmintic
Rajamuthiah R, et al., 2015
Tharmalingam N, et al., 2018
Ayerbe-Algaba R, et al., 2018

Metformin Antihyperglycemic He X, et al., 2022

*NSAID: non-steroidal anti-inflammatory drug
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However, the contributions of traditional in vivo or in vitro methods, both in the synthesis of new 
drugs and in the repurposing of known molecules, remain scarce for the speed at which AMR appear 
(Monteiro NRC, et al., 2021). Given the large amount of information reported on ligands, targets and 
diseases in publicly available databases, greater efforts have been made in the application of discovery 
strategies based on in silico repositioning during the last decades. These approaches have shown to 
provide valuable novel opportunities for drug discovery and development, becoming a key methodol-
ogy for identifying and evaluating new seedings and new repurposed drugs in a reasonable time and 
in a relatively easy way (Nazarshodeh E, et al., 2021). The emergence of AMR urgently requires rapid 
and effective therapeutic development. Drug reuse and redesign using existing computational analysis 
methods capable of processing thousands of target molecules is a way to speed up the process (Dey D, 
et al., 2021).

FOCUS OF THE ARTICLE

There are different methods that apply computational models to improve the development of new anti-
microbials or the repositioning of non-antibiotic drugs (Figure 2). All of them focus on the discovery of 
new drug-target interactions (DTI), as it is a key step in both the discovery and design and repositioning 
of antimicrobial drugs (D’Souza S, et al., 2020). In this chapter we will present the methods most fre-
quently used in the discovery and/or repositioning of drugs aimed at the investigation of new antibiotics. 
These methods can be divided into 4 large blocks. First, we find AI, which encompasses concepts such 
as ML, decision trees, neural networks and DL. Next, another important category because it is a com-
mon method of choice in the design and repositioning of drugs is virtual screening that encompasses 
molecular docking. Finally, we find molecular dynamics that analyzes the physical movement of atoms 
and molecules, as well as the interactions between them.
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1. Artificial Intelligence

AI is a general term that includes any computer program capable of processing data autonomously and 
make decisions, or categorize data, after a learning process, which is generally continuous and adaptative 
(Goel AK, et al., 2011). Computational modeling based on AI principles turns out to be a very useful 
avenue for the identification, development and repositioning of drugs, since it is able to recognize drugs 
and their physicochemical properties, as well as evaluate their efficacy and toxicity profile (Zhong F, 
et al., 2018). Within AI one can find ML, which differs from the broader term in that data are inputted 
along with algorithms which help the machine learn without being explicitly programmed (Badillo S, et 
al., 2020). These algorithms have proven to be interesting for designing models capable of identifying 
antimicrobial molecules or repositioning known drugs to antibiotics. (Gupta S, et al., 2019). Furthermore, 
DL appears as a subset of ML where vast volumes of data and complex algorithms are used to train a 
model (D’Souza S, et al., 2020) (Figure 3).

Figure 2. Tree diagram of models capable of contributing to the development of new molecules or re-
positioning of targeted drugs in the search for new antimicrobials, both individually (blue arrows) and 
in combination (red arrows).
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An example of a model within the AI methodology is the Tree-based Quantitative Structure-Activity 
Relationship (QSAR) model, which applies ML methods to compare a candidate ligand with the set of 
all known ligands to infer its binding capacity (Byvatov E, et al., 2003). This method has proven to be 
suitable for the synthesis of new antimicrobials, specifically, antimicrobial peptides (AMP), one of the 
alternatives to traditional antibiotic therapy that is under development (Fleitas Martinez O, et al., 2019). 
The natural and synthesized AMPs so far have disadvantages (physical-chemical instability, short half-life, 
rapid elimination, slow penetration into tissues...) that do not allow it to assert itself as an alternative treat-
ment, but complementary to antibiotics (Oshiro KG, et al., 2019). In order to find AMPs more suitable for 
optimal treatment, special attention has been paid to the QSAR model, because it uses physicochemical 
descriptors to predict the biological activity of peptides from their amino acid sequences (Mitchell JB, 
et al., 2014). In our context, QSAR models can be used to identify determinants that are important for 
antimicrobial activities and, from these determinants, design new and more effective AMPs (Lee EY, et 
al., 2017). This model has been applied to calculate the antimicrobial potential of different molecules, 
such as wasp venom-derived mastoparan analogues and peptoids (AMP mimics) (Czyzewski AM, et al., 
2016, Toropova MA, et al., 2015). The QSAR model has also contributed to other alternatives to antibi-
otics such as nanoparticles. A study applied this model to identify peptides of interest that induced the 
production of silver nanoparticles with antimicrobial potential (Bozic AS, et al., 2016). Another major 
finding attributed to this model is the development of antituberculous antimicrobials, such as peptide 
inhibitors of ribonucleotide reductase (RNR) of M. tuberculosis (Nurbo J, et al., 2007). More recently, 
the QSAR model has also demonstrated its potential to improve drug repositioning. In a study the authors 
applied a tree-based classification method using linear discriminant analysis and discrete indices (Suay-
Garcia B, et al., 2020). This QSAR model was able to identify from the DrugBank database 134 drugs 
as possible antibacterial candidates against E. coli. Only 8 of these drugs were known as antibiotics, 67 
were approved drugs for other pathologies and 55 were experimental stage drugs. In another study, the 
nicotinamide-nucleotide adenylyl transferase protein of the microorganism M. tuberculosis was selected 
as a target of interest, because it is an essential protein for the growth of this pathogen. From the structure 

Figure 3. Relationships between Artificial Intelligence, Machine Learning and Deep Learning and how 
these models operate. Created with BioRender.com
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of this protein, an in silico model of virtual ligand detection was built in front of the Prestwick chemi-
cal library and the ZINC database, resulting in 155 molecules with potential interaction capacity with 
the protein (Cloete R, et al., 2021). 5 of these molecules were introduced into a 3D-QSAR model that 
validated the inhibition properties of the compounds by comparing them with already known inhibitors. 
As a result of the entire in silico assay and after an in vitro test, it was confirmed that Novobiocin and 
derivatives of this drug as coumermycin could be considered for future cell trials and synthesis studies 
taking these molecules as serial heads for new antituberculous.

2. Virtual screening

Virtual Screening (SV) is a high-throughput experimental screening technique, which uses the early stages 
of the drug discovery process to search for libraries of small molecules to identify chemical compounds 
that are likely to bind to one or more drug targets (Shoichet BK, 2004). There are two categories of SV 
that encompass different screening techniques. First, we have ligand-based virtual screening (LGWS), 
which is based on molecular similarity through the comparison of different structural and physicochemical 
properties (Lill M, 2013). Second, there is virtual structure-based or target-based or molecular dock-
ing (SBVS or TBVS), which aims to predict the best interaction between ligands and a target to form a 
complex (Maia EHB, et al., 2020). SBVS presents significant advantage in terms of de novo synthesis, 
as there is no need for physically existing molecules. In addition, it is a useful method to predict the pos-
sible mechanism of antimicrobial action that the compound of interest may have. There is literature that 
exposes the effectiveness of this method in reference to the repositioning of molecules already known. 
An example is a study where a computational approach of drug reuse guided by polypharmacology was 
applied to identify molecules with antituberculous potential (Madugula SS, et al., 2022). After molecular 
docking of the targets considered important of M. tuberculosis to the molecules approved by the FDA, 
34 drugs with antituberculous and antibacterial activity were observed. Of these molecules, 4 were not 
already recognized antibiotics (nitrofural, stavudine, quinine and quinidine)

A study expanded information on the repositioning of phenothiazine-derived drugs, a group of 
compounds used mainly to treat psychotic disorders, since they block dopaminergic receptors thus 
preventing binding to dopamine (Posso MC, et al., 2022). However, chlorpromazine, thioridazine, and 
trifluoperazine had also demonstrated antibacterial activity. With molecular docking, Nistorescu et al. 
performed a simulation of interactions between chlorpromazine and laser-irradiated chlorpromazine 
with several clinically important microorganisms (Nistorescu S, et al., 2020). As a result, irradiated 
chlorpromazine was shown to exhibit better antimicrobial activity than the unmanipulated molecule, in 
addition to reducing the formation of biofilms by P. aeruginosa and MRSA in impregnated catheters.

Dwivedi et al. analyzed by molecular docking the interaction between the Tap protein of the patho-
gen M. tuberculosis and 18 calcium blockers/channels (Dwivedi M, et al., 2022). At the end of the 
analysis, five ligands were observed: glimepiride, flecainide, flupyritin, nimodipine and amlodipine 
as promising compounds for recovering the sensitivity of M. tuberculosis to antituberculous drugs. 
Singh et al. studied molecular docking the interactions between the protein diaminopimelase epimerase 
(DapF) of Enterococcus faecalis and the molecules acetaminophen and dexamethasone. After docking, 
both molecules were shown to potentially act as DapF inhibitors (Singh H, et al., 2021). Another protein 
of interest for M. tuberculosis was cyclophilin peptidyl-propyl isomerase (PpiB), which Kumar et al. He 
studied, together with other homologous proteins, by in silico coupling its ability to create complexes 
with the molecules acarbose, cyclosporine-A and gallium. Through this analysis, it was observed that 
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the residues of the PpiB protein interacted with acarbose, cyclosporine-A and Gallium nanoparticles, 
exposing a potential capacity as modulators (Kumar A, et al., 2019).

As we have already pointed out, computational models are not always used individually. In this case, 
in combination with acoupling analysis of a genome-scale metabolic model integrated with protein 
structures (GEM-PRO), a study was able to identify 92 Escherichia coli target proteins that interacted 
with 1405 FDA-approved drugs that could be repositioned as antibiotics against this bacterium. These 
molecules showed affinity for one or more of the proteins resulting from the in silico assay. Among the 
drugs selected by the model, Grazoprevir and Retapamulin appeared, anti-infective molecules already 
known, which could demonstrate the validation of this work to reposition drugs to antibiotics (Nazar-
shodeh E, 2021).

3. Molecular Dynamics

Molecular dynamics simulation provides a useful approach when simulating DTIs and by evaluating 
the molecular characteristics of the elements present in the interaction (Singh D, et al., 2020). It is a 
hybrid technique that provides the key properties of formulations before experimental setup, providing 
information on the stable attributes of such interaction. Molecular dynamics, together with AI, have been 
shown to be capable of developing new antimicrobial drugs (Okada K, et al., 2019).

A rational design that facilitated de novo synthesis of AMP was guided by simulations generated 
by molecular dynamics, which predicted and detailed at the atomic level structures formed by peptide 
designs with potential antimicrobial activity (Chen CH, et al., 2019). One of the designs obtained by this 
model demonstrated an AMP with a small size (four amino acids) but with a powerful biocidal capacity 
through the formation of pores in microbial membranes against both large-positive and Gram-negative 
pathogens.

An enzyme of interest that occurs in several bacteria is DNA gyrase B (GyrB) as a target in antibiotic 
treatment. Islam et al. conducted a computational study where benzothiazole and N-phenylpyrrolamide 
derivatives were collected which, according to the literature and after a trial by molecular docking, dem-
onstrated a stable interaction with GyrB (Islam MA, et al., 2020). From the 10 most stable complexes, 
6 de novo chemical analogues were screened and the stability of the ITD was confirmed by molecular 
dynamics simulation and promising drugs were considered subject to experimental validation in vitro.

Molecular dynamics have also been shown to be, with the help of other models, useful in drug 
repositioning, as well as assessing DTI and binding stability quickly and accurately. After a previous 
in silico assay where four broad-spectrum AMPs were developed and synthesized. They performed a 
model that combined molecular dynamics, docking and simulation to confirm their affinity to Klebsi-
ella aerogenes beta-lactamases. These AMPs were found to have more affinity than some beta-lactams 
already registered with the FDA. This represents an improvement in treatments against bacteria resistant 
to beta-lactams due to the presence of beta-lactamase, one of the most widespread resistances in the 
world (Chakkyarath V, et al., 2021)

Due to the emergence to find new antituberculous drugs, Dwivedi et al. conducted a computational 
study to evaluate the binding affinity of 38 phytomolecules to select more effective ligands against the 
resuscitation-promoting factor B (RpfB) of M. tuberculosis (Dwivedi VD, et al., 2020). To this end, 
molecular docking and molecular dynamics models were combined to examine the stability of DTI. 
As a result of the study, it was observed that diospirin, 2’-nortiliacorinin, 5,4’-dihydroxy-3,7,8,3’-
tetramethoxyflavone and tyliacorin showed binding affinity to the target protein, indicating its ability to 
inhibit it and therefore highlighting a possible treatment for M. tuberculosis infections. Recently, Singh 
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et al. examined phytochemicals from Withania somnifera to find possible inhibitors of the enzyme CTP 
synthase (Mtb PyrG). After performing molecular docking combined with simulation by molecular 
dynamics it was observed that the molecules quercetin 3-rutinoside-7-glucoside, rutin, chlorogenic acid 
and isochlorogenic acid C presented stable binding energies in the interaction with the target enzyme 
(Singh A, et al., 2022). Currently, these molecules are being considered for future in vitro and in vivo 
trials to confirm their anti-tuberculosis effectiveness. With a similar strategy, the recent study by Shailaja 
et al. shown that adapalene interacted with high binding energy with key residues of the enzyme New 
Delhi metallo-beta-lactamase 1 (NMD-1) (Shailaja S, et al., 2022). Another example of computational 
models combined with molecular dynamics is the study by Das et al., which DL and molecular dynamics 
were combined to encode molecules with antibacterial activity. Through this model, 20 candidate AMPs 
were identified and synthesized, of which two showed activities against different Gram-positive and 
Gram-negative pathogens (including multidrug-resistant Klebsiella pneumoniae) and a low propensity 
to induce resistance against E. coli (Das P, et al., 2021). In addition, these molecules demonstrated low 
toxicity in subsequent in vitro and in vivo tests.

All the models present in this chapter demonstrate an optimal capacity to provide, through a rela-
tively quick and simple process, antimicrobial molecules capable of helping to combat current AMR, 
increasing the therapeutic arsenal available, and providing a more than attractive opportunity for the 
pharmaceutical industry to invest in R+D aimed at these design tools, from which the antibiotics (and 
other drugs) of the future will emerge.

SOLUTIONS AND RECOMMENDATIONS

Thanks to techniques such as computational design, it was possible to combat infectious diseases in 
the so-called Golden Age of antibiotics (Mohr KI, 2016). However, these microorganisms have been 
developing resistances to the therapeutic arsenal currently available, which has barely been updated 
with new antimicrobial molecules for more than 30 years. These resistances have been reducing the 
efficacy and, consequently, the antibiotic treatment options. It is important to note that one of the most 
worrying factors of AMR is the speed at which they appear, currently much faster than the rate of de-
velopment of new antibiotics (Liu Y, et al., 2021, Pérez-Gracia MT, 2021). All the results presented 
in the focus of the article have been obtained new potential antibiotic in a relatively easy and fast way. 
The simplicity and speed of these models are very attractive factors for the pharmaceutical industry in 
terms of increasing investment in R+D to develop antimicrobial molecules. Therefore, the computational 
models presented could easily, with the support of the pharmaceutical industry, reach the goal presented 
by several organizations of placing between 2 and 4 new antimicrobials on the market by 2030. (Plan 
Nacional Resistencia Antibióticos, 2022, United Nations, 2021, Priorities of the global leaders group 
on AMR for 2021-2022, 2021).

Despite the demonstrated potential of the above computational tools for the search for new antimi-
crobials, there are issues that could be addressed to improve the operations performed by the methods 
exposed. The ability of these models to provide important information from data sets obtained from 
different databases is indisputable. Thanks to this immense amount of data, the tools have been able to 
calculate the characteristics of the different drugs and targets, in addition to evaluating through various 
metrics the possible orientations and stability of the different DTI. Unfortunately, this same information 
can be counterproductive, due to the difficulty in managing large amounts of data, along with the com-
plications of design and development. In addition, most techniques use a different data sets to evaluate 
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the results (data processing at the atomic level, at the amino acid level, with 3D models...). This makes 
it impossible to quantitatively compare methods based on accuracy, precision, etc., as different data sets 
can produce different results (Sachdev K, et al., 2019). That is why, to solve the limitations presented by 
each model individually, it is interesting to develop a model or combination of existing models. Histori-
cally, problems of inaccuracy and inefficiency have been observed in traditional approaches (Molecular 
docking and Virtual Screening) that today have been solved by incorporating AI algorithms into the 
process of drug design and discovery (Harrer S, et al., 2019). In previous sections we have been able 
to observe how the combination of different models (Molecular docking with molecular dynamics, or 
Molecular dynamics with DL) allow to confirm key factors such as the stability of the DTI, so it would 
be interesting to make combinations that are consolidated in a single model to further optimize the pro-
cessing and evaluation of data and results. The combination of models or the design of more complex 
models would cover the DTI with a much more extensive and complete information, without relatively 
affecting the operating time that the models we have seen individually would have.

FUTURE RESEARCH DIRECTIONS

As explained above, the key point for the design and development of new antimicrobials is the generation 
of faster and more effective models. There are methods with novel approaches capable of providing new 
methods of processing information about molecules, pharmacological targets, and their respective DTIs.

Topological Data Analysis is a computational model of mathematical prediction that applies geometry 
and topology to develop tools to study the qualitative characteristics of the data on molecules (Macalino 
SJY, et al., 2020). One of the advantages of TDA is that it does not require a group of inactive com-
pounds for the model to carry out its learning process. This is very favorable considering that negative 
activity results are not normally published, greatly complicating access to molecular structures that are 
known to be inactive for the construction and validation of models. Being a newer tool compared to 
other techniques, there are few studies in the literature where this model is applied in terms of the search 
for new antimicrobials. In one of them, they applied a TDA strategy to verify the possible antimicrobial 
activity of 55 new compounds against Helicobacter pylori (Hernández-Ochoa B, et al., 2021). In this 
study, interactions were discovered with the enzyme glucose-6-phosphate dehydrogenase. After the 
results obtained, the compounds represent new candidates for promising drugs against this infection.

Another novel approach is that aimed at transcriptomic studies and genome-scale metabolic models 
(GSM), which are tools that could aid to better understand the resistance mechanisms of microorganisms, 
as well as the molecules involved in these AMR (Das S, et al., 2022). These are in silico representations 
of the entire genome or of the metabolic reactions present in the microorganism (Thiele I, et al., 2010). 
In this way, it is possible to predict and understand the changes that could happen in the microorganism 
by varying certain genetic, metabolic and environmental parameters (O’Brien EJ, et al., 2015). Several 
studies demonstrate the potential of these tools to obtain antibiotics quickly and with very promising 
properties in terms of efficacy and safety (Nielsen J, 2017).

Despite finding no literature regarding the development of antibiotic molecules, several in silico 
chemogenomic studies have shown that genome-wide gene expression data can also represent a useful 
resource for identifying drugs and drug target genes that can potentially be used for drug repositioning 
(Bispo NA, et al., 2013). For this reason, we have considered it of interest to expose this methodology as 
a future tool for the development of new antibiotics. The goal of chemogenomics is to establish molecular 
relationships between ligands and drug targets (Neves BJ, et al., 2015). For this it is based on the same 
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concept presented by TDA, “similar targets have similar ligands”, the search based on homology using 
these databases helps to identify compounds that can act on a target and of which this DTI is unknown 
(Rognan D, 2007).

Another approach that could be taken to further increase the usefulness of the computational ap-
proaches discussed is to leverage them to accelerate the results of research aimed at alternative therapies 
to antimicrobials. Given the rapid development of computing tools over the years, it is hoped that high-
precision methods will help researchers improve scoring functions to design new compounds such as 
AMP, monoclonal antibodies or NPs that are more effective and safer at a low cost. Taken together, all 
the features present in computational models prove to be more than valid tools for the design of real and 
effective drug candidates that are more likely to reach the market in the coming years.

CONCLUSION

The literature presented in this chapter reveals the importance of AMR as a global health threat, and the 
need for new antibiotics to effectively treat infections resistant to current drugs. Computational models 
have proven to play a key role in this problem. The presented models based on both, traditional and newer 
approaches, have proven to have potential for the discovery, design, and development of new antimicro-
bials. They also present the necessary tools to optimize the repurposing of known non-antibiotic drugs 
to antibiotics. The possibilities presented by these tools also aim to improve information on other topics 
of interest in the problem of ADR, such as alternative therapies to conventional drugs and the increase 
in knowledge of resistance mechanisms through the processing of omics and metabolomics data. To 
achieve a new battery of optimal antibiotic drugs on the market, it is necessary to reduce the limitations 
of the models that are known with greater investments in R+D. Another alternative to perfect current 
computational models is combining them in a single model to provide more to provide more complete 
information about the molecules, drug targets and DTI that may occur.
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KEY TERMS AND DEFINITIONS

Artificial Intelligence (AI): A branch of computer science dedicated to building machines capable 
of mimicking human intelligence processes, including reasoning, learning and deduction.

Deep Learning (DL): A class of ML algorithms that uses multiple layers to learn and make predic-
tions. It differs from the general ML term in that DL can process unstructured data and automate feature 
extraction.

Machine Learning (ML): A subfield of AI in which machines are built with learning algorithms 
that allows the system to become mora accurate at predicting outcomes based on experience, without 
additional human intervention.

Molecular Docking: A molecular modeling technique used to predict how two or more molecules 
interact, determining the probability of a successful binding.

Molecular Dynamics: A simulation of how atoms and molecules move and evolve within a specific 
system.

Quantitative Structure-Activity Relationship (QSAR): A computational modeling method that can 
be built using different mathematical approaches and that is aimed at revealing the relationship between 
a chemical structure and its pharmacological activity.

Topological Data Analysis (TDA): A mathematical approach that uses topological methods to 
analyze large-scale datasets by extracting features of data based on the geometry and topology encoded 
in the distribution of datapoints.


