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INTRODUCTION

Wireless communication systems use the radio frequency (RF) spectrum as their propagation medium. 
RF spectrum is divided into several bands occupying electromagnetic frequencies from 30 kHz to 300 
GHz. The necessity of RF spectrum uses increases constantly due to the rapid growth of modern wire-
less communication systems. Several technologies, especially the deployment of the 5G network and the 
Internet of Things (IoT), cause high demand for resources from the wireless spectrum for many devices 
(Xu et al., 2020).

Most of the available RF spectrum has already been assigned to existing wireless systems resulting 
in only an insignificant part of this spectrum can be given to new applications.

Cognitive radio (CR) aims to reinforce the utilization of the underutilized RF spectrum. These fre-
quency bands are assigned to licensed or primary users (PU) but are not utilized in some locations or 
time instants. Therefore, unlicensed, or secondary users (SU) can use this spectrum.

One of the principal operations of CR is spectrum sensing (SS), consisting of dynamic monitoring 
and employing underutilized spectrum without interfering with PUs.

This chapter proposes a survey of current spectrum sensing (SS) research involving the application 
of machine learning techniques. The extensive review included in this document mainly focuses on deep 
learning architectures and image processing techniques that can help improve CR systems’ detection 
probability to maximize the underutilized RF spectrum in 5G. This article aims to check the newest 
research about spectrum sensing techniques reported in the literature, which apply images or time series 
as input for different deep learning architectures whose main task is to classify the spectrum as occupied 
or non-occupied.

A current trend, automatic classification modulation (AMC), is also included in this review. It is 
closely related to SS by recognizing the spectrum availability and classifying the signal type currently 
using the licensed band of interest. This chapter is helpful for comparison of the current tendencies in 
spectrum sensing in terms of signal simulation, including different analog and digital modulation types, 
image-based approaches such as covariance matrix or spectrogram, and wireless channel simulations.
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BACKGROUND

Cognitive radio is a new design paradigm of wireless communications systems that aims to maximize 
the use of the underutilized RF spectrum. Simon Haykin defines cognitive radio as a wireless com-
munications system that is intelligent and aware of its environment. It uses a methodology by which it 
learns from the environment and adapts to statistical variations in the input stimulus (Captain & Joshi, 
2021; Haykin, 2005). This definition has two main objectives:

• Highly reliable communication when and where needed, and
• Efficient use of the radio spectrum.

Cognitive radio intends to manage and execute real-time operations to adjust its behavior and deal with 
the increasing demands of RF spectrum and spectrum shortage caused by fixed frequency assignments 
(Prasad et al., 2008). SU or CR users are allowed access to bands of licensed spectrum assigned to PUs 
if they do not cause destructive interference. In a cognitive radio network (CRN), the SU or unlicensed 
user can temporarily access the spectrum not occupied by the PU; therefore, it is critical to determine 
whether the PU is present or not, and spectrum sensing is a crucial prerequisite for CR (Xu et al., 2020). 
Three possible cognitive radio implementation models exist: interweave, underlay, and overlay. Due to 
the popularity of the interweave model and standardization efforts by IEEE on IEEE 802.11 and IEEE 
802.11af standards, this type is detailed below (Captain & Joshi, 2021).

Interweave model: In this model, secondary users can access the licensed spectrum only when 
primary users do not use it. A licensed spectrum that is not in use is called a spectrum hole. Second-
ary users must dynamically identify spectrum holes. Once the primary user begins transmitting on the 
licensed band again, the secondary user must immediately abandon the licensed spectrum without any 
interference with PU.

Spectrum Sensing

One of the purposeful requirements of the SU is to exploit the underutilized spectrum without destructive 
interference to PU. In addition, a PU is not required to share the spectrum with SUs. Therefore, SUs must 
be able to detect holes in the spectrum independently of PU before using the licensed spectrum. During 
the use of that band, the SU needs to monitor constantly if any PU is active in that band, and if that is the 
case, it needs to abandon that band immediately. As a result, efficient spectrum sensing techniques are 
required to minimize interference with the PU while maximizing spectrum utilization (Captain & Joshi, 
2021). There are three types of spectrum sensing, narrowband spectrum sensing, wideband spectrum 
sensing, and cooperative spectrum sensing.

Narrowband Spectrum Sensing

Narrowband spectrum sensing finds whether a single PU-licensed band is available for SU. The simpli-
fied signal detection problem can be explained in terms of two hypotheses H0 and H1. Hypothesis H0 
means that only noise is received while the PU signal is missing. Similarly, the hypothesis H1 states that 
not only noise but also PU signals are observed. Denoting the received signal at the signal detector as 
y(n) and the PU signals observed by SU as x(n), we have:
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H0: y(n)=w(n) 

H1: y(n)=x(n)+w(n) 

where w(n) is zero mean additive white Gaussian noise (AWGN), and n denotes the time index.
Due to the unpredictable noise, the probability of detecting PU called a false alarm PF, is increased 

when it is not present. As a result, the probability of correctly detecting the PU signal when it is present, 
denoted as PD, is low.

Ideally, it is desirable to have PD=1 and PF=0; however, this is impossible in a low signal-to-noise 
ratio (SNR) environment. More sophisticated and efficient techniques exist for narrowband spectrum 
sensing techniques like matched filter, covariance-based, cyclostationary, energy, and wavelet detection 
(Jain et al., 2019).

Wideband Spectrum Sensing

Since the wideband spectrum consists of many narrow sub-bands, multiple bands should be evaluated to 
find spectrum holes. As a result, narrowband sensing techniques cannot be directly used for performing 
wideband spectrum sensing because they make a single binary decision for the whole spectrum and thus 
cannot identify individual spectral holes within the wideband spectrum (Ahmad, 2020).

Wideband spectrum sensing can be classified into two classes based on the sampling rate: Nyquist 
wideband spectrum sensing and sub-Nyquist wideband spectrum sensing.

In wideband spectrum sensing, the wideband signal is obtained using an analog-to-digital converter 
(ADC), which samples the broadband signal at the Nyquist sampling rate. Next, signal processing tech-
niques are used to detect the spectrum holes. However, the problem arises because the required sampling 
rate is very high and requires high computational complexity and detection time. Consequently, Nyquist 
wideband sensing imposes significant challenges for required hardware operating at a high sampling 
rate and efficient high-speed algorithms (Yang et al., 2018).

Sub-Nyquist wideband spectrum sensing samples only a fraction of the entire bandwidth and ignores 
the remaining part. This behavior is applied when the SU might only be interested in finding various 
spectrum holes rather than all spectrum opportunities in a wideband cognitive radio network (Sun & 
Laneman, 2014).

Cooperative Spectrum Sensing

Cooperative spectrum sensing (CSS) enhances the sensing performance by exploiting the spatial diver-
sity of multiple CR users at the expense of cooperation overhead. Multiple SUs, also called cooperating 
secondary users (CSU), collaborate by sharing their information to detect spectrum opportunities. CSS 
is divided into three categories: centralized, distributed, and relay-assisted (Akyildiz et al., 2011).

In summary, the following figure presents a diagram with all the mentioned classifications on spec-
trum sensing.



AReviewofSpectrumSensingTechniquesBasedonMachineLearning

4

REVIEW OF MOST RECENT TECHNIQUES

Recently, there has been an increasing interest in applying machine learning methods to different en-
gineering problems for which the development of conventional solutions is challenged by modeling or 
algorithmic complexity (Simeone, 2018). Machine learning (ML) is a branch of artificial intelligence 
(AI) and computer science that develops algorithms to learn from data. These algorithms can solve 
problems by learning from data and creating a model or set of rules to predict an outcome based on 
features (Rebala et al., 2019).

Deep learning (DL) is a subset of ML where feature extraction is performed along the training process 
(Chew & Cooper, 2020). DL is, at this time, one of the most popular research directions from ML and 
has reached great achievement in many fields, such as natural language processing, computer vision, and 
speech recognition (Yang et al., 2019). Artificial neural networks (NN) are the most popular supervised 
ML models; they can be divided into two variants, traditional and deep architectures (Khamayseh & 
Halawani, 2020). Traditional NN is constituted of three layers, input, hidden, and output; however, this 
type has the problem of an excessive number of parameters (Xu et al., 2022).

Figure 1. Spectrum sensing classifications
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Deep structures have a feature learning part in their inner layers, so the network selects features by 
itself (Xu et al., 2020). Convolutional neural networks (CNN) are deep NN used extensively for image 
classification and analysis (Nair & Narayanan, 2022).

Spectrum sensing is a binary classification task where secondary users must classify the presence 
or absence of the primary user. As a result, the most recent SS methods generally use ML techniques to 
perform this classification. Three main types of ML-based include unsupervised learning, supervised 
learning, and reinforcement learning.

The literature review demonstrates that authors mainly used supervised machine learning-based ap-
proaches, i.e., ML first generates a model based on processing the dataset and then predicts the label of 
a new input data point by executing that model (Rebala et al., 2019). The classification of supervised 
machine learning-based techniques included in this survey is presented below.

Image-based approaches: This approach consists of using any image as input. An image is a 2-D 
signal or matrix with information in two coordinates. Many types of images can be created to be applied as 
input for spectrum sensing systems, including spectrograms, covariance matrices, constellation maps, etc.

Time series-based approaches: This approach applies 1-D signals as input for spectrum sensing 
systems. This signal or vector could be a direct measurement of the amplitude of a wireless signal or any 
type of transformation, such as the power spectrum through the Fourier transform. Many authors apply 
other kinds of transformations intending to extract relevant features for classification.

Automatic modulation classification: Spectrum sensing addresses the problem of detecting the 
presence or absence of a signal by analyzing the frequency spectrum. A similar concept is automatic 
modulation classification (AMC). This process detects the presence of a signal and classifies the signal 
modulation type from the spectrum samples or images. AMC approaches could be image-based or time 
series-based.

In summary, the following figure presents a diagram with all the mentioned approaches to machine 
learning-based spectrum sensing and their subdivisions in terms of spectrum sensing types.

Image-Based Approaches

From the point of view of machine learning for images, several works have been reported in the literature.

Non-Cooperative Narrowband

Pan et al. (2020) proposed a spectrum sensing method based on deep learning and cyclic spectrum, which 
applies the benefits of a CNN to an image obtained from an orthogonal frequency division multiplexing 
(OFDM) signal. The OFDM signal was analyzed, and the cyclic spectrum was obtained using a smooth-
ing fast Fourier transform (FFT) accumulation algorithm (FAM). This spectrum is normalized to process 
the gray-scale image corresponding to the cyclic autocorrelation. A CNN based on a classic LeNet-5 
model was applied for the learning phase. The novelty of this method was the application of the cyclic 
spectrum, which is an inherent feature of OFDM signals. Another CNN-based approach is presented 
by Xie et al. (2019), which does not require information regarding the probabilistic model of the signal, 
noise, or pattern of PU activity. This work takes advantage of the present and historical data, which are 
represented through covariance matrices (CM) used as the input for a CNN to train the algorithm with 
both current information and the pattern of PU activity originating from a semi-Markov model approach. 
CMs are considered images in this work. Another work that applies the sample covariance matrix as the 
input for a CNN is reported by C. Liu et al. (2019), proposing a covariance matrix-aware CNN (CM-
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CNN)-based spectrum sensing algorithm. This paper formulates the structure of the CM-CNN method 
and theoretically proves that this approach is equivalent to the optimal estimator-correlator (E-C) detector.

A combination between CNN and Long-Short Term Memory (LSTM) has been proposed by Xie et 
al. (2020), which applies the CNN to extract energy-correlation features from the covariance matrices 
(images) generated by the sensing data. Then the series corresponding to multiple sensing periods are 
input into the LSTM to learn the PU activity pattern. The purpose of learning the PU activity pattern is 
to promote the detection probability further. This algorithm is evaluated in scenarios with and without 
noise uncertainty. A similar combination reported by Chen et al. (2022) employs the covariance matrix of 
the signals received into an LSTM classification model (CM-LSTM) to achieve fusion learning of spatial 
correlation and temporal correlation features of the signals. The CM-LSTM algorithm can simultaneously 
learn the spatial correlation features of multiple signals received by an antenna array and the temporal 
correlation features of single signals providing two options that work together for classification purposes.

The spectrum sensing problem is transformed into an image recognition problem by Chew and Cooper 
(2020), employing a well know CNN, AlexNet. This CNN is re-purposed to sense the energy spectrum 
using a small training set of a few hundred samples. Another advantage of this detector is that it does 
not require noise floor measurements. This work demonstrates how fine tuning can quickly re-purpose 
an existing CNN to perform a new task seemingly unrelated to the original one. Similarly, the paper 
reported by Liu et al. (2021) utilizes a Deep convolutional generative adversarial network (DCGAN) to 
expand the training set to overcome the shortage of sample data. The sampling covariance matrix of the 
received signal is transformed into a true color image. After that, the obtained training set is expanded 
with the DCGAN. Finally, the LeNet network (a CNN) is trained based on this extended data.

Figure 2. Machine learning-based spectrum sensing techniques
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Regarding spectrograms used as input for SS systems, Lees et al. (2019) investigate the performance 
of thirteen methods for SPN-43 radar detection using a library of over 14,000 3.5 GHz band spectro-
grams. Comparing classical methods from signal detection theory and machine learning to several deep 
learning architectures demonstrates that ML algorithms outperform classical signal detection methods. 
A three-layer CNN offers a superior tradeoff between accuracy and computational complexity. Similarly, 
Chen et al. (2021) exploit the time-frequency domain information of signal samples using the short-time 
Fourier transform (STFT) and CNN. This blind spectrum sensing STFT-CNN method has no require-
ments for the PU signal and considerable SNR-robustness.

Gai et al. (2022) proposed an interesting approach that utilizes a residual cellular network (ResCel-
Net), involving a dual-branch convolution structure, improving the feature extraction ability. The addition 
operation enhances the micro-feature information, and residual learning is adopted to facilitate training 
of the deep spectrum sensing network. The received signals are reshaped into a matrix, normalized to 
gray levels, and used as the network’s input (images). Then the feature information of gray-scale images 
is extracted, and the network is trained through dual-branch convolution and residual learning. The fol-
lowing table presents a comparison between the works detailed in this subsection.

Cooperative Narrowband

The cooperative sensing approach in Nair and Narayanan (2022) introduces a technique to check the 
availability of spectrum based on spectrograms received from the primary user. It trains a CNN model 
to detect whether it is a signal or noise. Regularization methods helped to increase the model’s gener-
alization ability, and they could discriminate the newer untrained signal patterns from the noise signal 
patterns. Another cooperative sensing method presented by Lee et al. (2019) combines the individual 
sensing results of the SUs who learn autonomously with a CNN using training sensing samples. Both 
spectral (frequency bands) and spatial correlation (SUs received signal strength (RSS)) of individual 
sensing outcomes are considered such that an environment-specific CSS is enabled in deep cooperative 
sensing (DCS).

The ensemble approach by H. Liu et al. (2019) for CSS in an OFDM signal-based cognitive radio 
system also utilizes images as input for a CNN architecture. In this case, images are created through 
spectral coherence density (SCD), visualizing second-order correlation features, which will be used 
for classification. The PU detection of an OFDM signal is transformed into an SCD plane, i.e., image 
processing. The bagging strategy was employed to establish the training database between CSUs.

The Deep Reinforcement Learning (DRL) based algorithm proposed by Sarikhani and Keynia (2020) 
applies cooperative spectrum sensing using reinforcement learning to choose the needed SUs to cooper-
ate and DL in each SU to sense the presence or absence of the PU locally. The reinforcement part of the 
algorithm determines the required SU to share its measurements and local sensing results.

Adversarial transfer learning is applied to spectrum sensing in Miao et al. (2022), where the model is 
pre-trained at the central node first and fine-tuned at the local nodes. This work constructs a 2D dataset 
of the observed signal under various SNRs. Then a part of the samples with multiple SNRs in the dataset 
is employed to pre-train the CNN model. After that, the pre-trained CNN model is distributed to local 
nodes with different SNRs, and the pre-trained model is fine-tuned, resulting in more robust adaptability 
at the local node. The following table presents a comparison between the works detailed in this subsection.
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Non-Cooperative Wideband

A signal localization task performed by West et al. (2021) addresses the problem of wideband spectrum 
sensing, which requires detecting potentially multiple signals within the sample bandwidth at arbitrary 
center frequencies, offsets, and time bounds. This research applies semantic segmentation directly analo-
gous to the radiometer task of detecting whether a time/frequency bin contains a signal or no signal. In 
image processing, the input image (in this case, a log-magnitude spectrogram) is classified per pixel on 
the output with the exact resolution as the input image.

The research by Nguyen et al. (2018) presented an energy detector applied to the STFT of a wideband 
signal to produce a binary spectrogram. Bounding boxes for narrowband signals are then identified us-
ing image processing techniques on a block of the spectrogram at a time. These boxes are also tracked 
along the time axis and fused with the newly detected boxes to provide an online system for spectrum 
sensing. Fast and highly accurate detection is achieved in simulations for various signals with different 
hopping patterns and speeds. Another work based on a spectrogram is presented by Li et al. (2019), which 
proposes a temporal-frequency fusion network for precise spectrum energy level prediction considering 
heterogeneous data from multiple domains. This system detects signals from the raw spectrogram using 
an image processing-based robust signal detection procedure based on a modified Otsu thresholding 
algorithm. The temporal and frequency data for the prediction model automatically capture the intra-
spectrum correlations employing an LSTM network. Finally, Zha et al. (2019) proposed a DL framework 
capable of detecting and recognizing signals. Time-frequency spectrograms are exploited for wideband 
spectrum sensing, and eye diagrams and vector diagrams are used for the modulation classification task. 
Their network model includes single-shot multi-box detectors (SSD), CNN, and ResNet. The following 
table presents a comparison between the works detailed in this subsection.

Time Series-Based Approaches

The literature review of recent articles from 2018 to 2022 showed that although images have been used 
extensively for spectrum sensing, time series are still applied in multiple projects compiled in this section.

Non-Cooperative Narrowband

The research reported by Xu et al. (2020) employs a one-dimension time signal instead of an image as 
the input to a parallel CNN-LSTM network; this approach does not require prior knowledge about the 
information of the licensed user or channel state. A combination of CNN, LSTM, and fully connected 
neural networks proposed by Yang et al. (2019) found that the trained deep neural network learned from 
typical radio signals and its filters behaved like a matched filter. This work also analyzed the kernel size, 
the number of filters for the 1D-CNNs, and the effect of multiple LSTM layers obtaining the optimal 
signal detection performance when this number is 2. The following table presents more details regard-
ing these papers.
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Cooperative Narrowband

A combination between CNN and the gate recurring unit (GRU) has been reported by Xu et al. (2022). 
This work first applies CNN to extract spatial features and GRU for temporal characteristics; then a 
combination network receives these data to obtain a cooperative result based on a mixture of both types. 
The final network, called Combination-Net, improves the reliability of spectrum sensing by merging 
perception information from multiple collaborative nodes. Another approach that uses 1-D signals in-
stead of images is presented by Gao et al. (2019), proposing a DL-based signal detector that exploits the 
underlying structural information of modulated signals requiring no prior knowledge about channel state 
information or background noise. Additionally, this research proposes a DL-based cooperative detection 
to take advantage of the soft information from distributed sensing nodes. The following table presents 
more details regarding these papers.

Non-Cooperative Wideband

Two methods based on Wavelets and the Higuchi fractal dimension (HFD, a non-linear measure) were 
applied by Molina-Tenorio et al. (2019) to address wideband spectrum sensing. The multiresolution 
analysis (MRA) approach detects edges on 1D signals obtaining the available holes in the wideband 
spectrum. The classification procedure in this study utilized a simple decision threshold based on HFD 
applied over a frequency version of the input data.

The non-cooperative wideband detection approach proposed by Lin et al. (2022) jointly detects the 
signal presence and estimates their center frequencies and bandwidths. The DL architecture called Sig-
detNet includes signal preprocessing, enhancement, feature extraction based on neural networks, and 
postprocessing. This system comprises a convolutional encoder-decoder network with an embedding 
pyramid pooling module (CNN and residual block-based) constructed to extract informative features re-
lated to signal detection from multiscale. The following table presents more details regarding these works.

Automatic Modulation Classification

This survey also includes the following works because they provide essential insight regarding spectrum 
sensing and its possibility to classify the signal type using multiple signal processing and deep learning 
techniques.
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Image-Based Approaches

An exciting approach of DL for detecting and classifying RF signals was presented by Elyousseph 
and Altamimi (2021). The main advantage is identifying a signal presence without complete protocol 
information and detecting or classifying non-communication waveforms such as radar signals. In this 
work, a hybrid image is proposed taking advantage of both time and frequency domain information and 
facing the classification as a computer vision problem. Another AMC-based work reported by Yakkati 
et al. (2021) proposes a multiscale DL-based approach. The method considered the fixed boundary 
range-based empirical Wavelet transform (FBREWT) based multiscale analysis technique to decompose 
the radio signal into sub-band signals or modes. The sub-band signals computed from the radio signal 
combined with the CNN are used to classify modulation types. The approach is tested using the radio 
signals of different SNR values and four different channel types including AWGN, a combination of 
Rayleigh fading and AWGN, a combination of Rician flat fading and AWGN, and a combination of 
Nakagami-m fading and AWGN. A different approach utilizing the benefits of collaborative spectrum 
sensing and deep learning has been reported by Chen et al. (2020). Although this work does not directly 
deal with the spectrum sensing problem; it provides more insight into image processing approaches such 
as semantic segmentation to identify the coverage range of RF emitters converting three-dimensional 
sensing data into a series of two-dimensional image slices. The following table resumes these works 
and includes more details.

Time Series-Based Approaches

Soltani et al. (2019) proposed a software implementation that utilizes Android smartphones with Tensor-
Flow Lite for modulation classification. This system runs a GPU-trained deep CNN for an SNR-based 
classification scheme to characterize modulation codes for spectrum management. This implementation 
also proposed a labeling mechanism derived from the insight about confusion matrices of modulation 
classes learned from previous training procedures.

An AMC method using a waveform-spectrum multimodal fusion (WSMF) method based on deep 
residual networks (ResNet) is reported by Qi et al. (2020). After extracting features from multimodal 
information using Resnet, this approach adopts a feature fusion strategy to merge multimodal parts 
of signals, such as IQ data, envelope data, and spectrum data, to obtain more discriminating features. 
Another AMC approach by Han et al. (2021) uses time-series signals which are transformed into mul-
tiple domains, including the frequency domain, by FFT and Welch power spectrum analysis. A stacked 
auto-encoder (SAE) was used for detailed and stable frequency-domain feature representations (feature 
fusion). A probabilistic neural network (PNN) was implemented for automatic modulation classifica-
tion for a complex electromagnetic environment with high noise levels and significant dynamic inputs.

A convenient way to perform continuous spectrum sensing is the prediction of spectrum occupancies, 
which is addressed in Aygül et al. (2022) by employing a DRL algorithm. This system exploits DRL 
algorithms to teach the base station (BS) how to independently predict spectrum occupancies straight 
from power spectral density data (time series and images). The following table resumes these works 
and includes more details.
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SOLUTIONS AND RECOMMENDATIONS

Since this work was mainly developed to obtain insight into the image processing techniques currently 
applied for spectrum sensing and automatic modulation classification, this section presents more infor-
mation regarding this specific area of digital signal processing.

In general, authors apply images as input for a spectrum sensing system. One of the main choices 
is the spectrogram, which provides information in both time and frequency domains in a matrix form. 
This method utilizes the STFT and has been proven efficient in several works in both narrowband and 
wideband spectrum sensing (Chen et al., 2021; Chew & Cooper, 2020; Lees et al., 2019; Li et al., 2019; 
Nair & Narayanan, 2022; Nguyen et al., 2018; West et al., 2021; Zha et al., 2019). Another popular image 
used for spectrum sensing is the covariance matrix, applied in multiple works (Chen et al., 2022; C. Liu 
et al., 2019; Liu et al., 2021; Miao et al., 2022; Xie et al., 2020; Xie et al., 2019). This matrix represents 
the correlation between signals received in multiple time slots or by multiple receptor antennas (coop-
erative SS). The main idea behind applying the covariance matrix is to discriminate signal correlation 
from noise correlation, which usually tends to have higher values. Other types of images used for SS 
include the 2-D cyclic autocorrelation gray map proposed by Pan et al. (2020), and the received signal 
observation matrix in Gai et al. (2022), both used for non-cooperative narrowband SS. For cooperative 
approaches, the spectral coherence density (SCD) plane was proposed by H. Liu et al. (2019), the matrix 
of accumulated received signal strength (RSS) of SUs from different bands by Lee et al. (2019), the 
energy measurement matrix by Sarikhani and Keynia (2020), and eye diagrams and vector diagrams in 
Zha et al. (2019). These works create matrices from wireless signals taking advantage of their energy, 
spectral, or spatial properties (constellation), which will inherently be related to a difference between 
the transmitted signal and the background noise.

Image Processing Techniques Review

The image processing techniques applied to input images (matrices) are usually implemented for wide-
band spectrum sensing. A robust signal detection procedure based on a modified Otsu thresholding al-
gorithm is proposed by Li et al. (2019). In the research presented by West et al. (2021), the input image, 
a log-magnitude spectrogram, is classified per pixel on the output with the same resolution as the input 
image using semantic segmentation, which is directly analogous to detecting whether a time/frequency 
bin contains a signal or no signal. Image enhancement is utilized by Zha et al. (2019), considering signal 
aggregation degree and enhancing the traditional eye and vector diagram by using a specific formula and 
scaling factors. The image details from these diagrams become more prominent utilizing this technique. 
A wideband SS approach based on image processing is reported by Nguyen et al. (2018), applying sev-
eral methods, including binarization, morphology operators, and connected components labeling. These 
algorithms were effective for fixed-frequency and frequency-hopping signals.

Deep Learning Techniques Review

Deep learning techniques are mainly used for spectrum sensing since they provide accurate results when 
assessing low SNR scenarios.

Convolutional neural networks (CNN) are the first choice for DL-based systems, as can be noticed in 
Chen et al. (2021), Chew and Cooper (2020), Lees et al. (2019), C. Liu et al. (2019), Liu et al. (2021), 
Pan et al. (2020), Xie et al. (2020); Xie et al. (2019), Xu et al. (2020), and Yang et al. (2019) which ad-
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dressed non-cooperative narrowband SS. In contrast, Lee et al. (2019), H. Liu et al. (2019), Miao et al. 
(2022), Nair and Narayanan (2022), Sarikhani and Keynia (2020), and Xu et al. (2022) focus on coop-
erative narrowband SS. In wideband spectrum sensing, only the work of Zha et al. (2019) utilized CNN.

AMC also has multiple examples of CNN-based approaches, such as Elyousseph and Altamimi (2021), 
Han et al. (2021), Qi et al. (2020), Soltani et al. (2019), and Yakkati et al. (2021).

Long-short-term memory (LSTM) models are less applied since generally they are helpful for 1-D 
signals or time series inputs, such as the works reported by Yang et al. (2019) and Xu et al. (2020) both 
these works combine CNN and LSTM. Another combination of CNN and LSTM called CLDNN was 
applied by Gao et al. (2019) for cooperative SS. However, a 2-D version of LSTM for images is proposed 
by Chen et al. (2022), Lees et al. (2019), Li et al. (2019), and Xie et al. (2020). Another recurrent model 
based on a GRU was reported by Xu et al. (2022).

Residual networks have also been proposed in the literature, specifically ResCelNet by Gai et al. 
(2022) and SigDetNet by Lin et al. (2022). Deep reinforcement learning is also present in this survey 
(Aygül et al., 2022; Sarikhani & Keynia, 2020). Finally, U-net is another type of DL model applied for 
segmentation in detecting modulated signals in a log-magnitude spectrogram (West et al., 2021).

FUTURE RESEARCH DIRECTIONS

The future seems promising for more DL-based approaches, such as residual networks, which are the latest 
models proposed in current works in the literature. 5G establishes the need for better spectrum utilization 
since more devices will demand more resources. To address this situation, many authors have proposed 
SS and AMC systems capable of obtaining a high probability of detection over low SNR scenarios.

An exciting trend found during the development of this paper was a combination of spectrum sens-
ing and spectrum prediction. The latter stands for techniques to learn from the spectrum via LSTM or 
another type of recurrent network, the PU’s spectrum usage patterns. By predicting the subsequent PU 
frequency band, it would be “easier” for the SU to avoid that band and choose another for their use.

Another future path will be the study and possible implementation of cooperative wideband spectrum 
sensing, which has yet to be reported in the literature until the development of this document. This has 
yet to be studied and can be considered a future research direction for interested parties. This SS branch 
could be helpful for wideband approaches since it exploits the inherent advantages of cooperative SS 
while covering a broad frequency band. However, it must be noted that the lack of work regarding this 
branch can also indicate that these types of SS systems are only partially affordable or could be too slow 
to work on real scenarios.

CONCLUSION

Spectrum sensing is crucial to cognitive radio and should be as accurate as possible. Deep learning 
techniques improve the functionality of different spectrum sensing approaches for both narrowband and 
wideband SS. This paper focused on image processing and deep learning techniques as the main com-
ponents of spectrum sensing systems. A wide variety of methods have been included in this document, 
such as narrowband, wideband, and cooperative spectrum sensing approaches. State of art included in 
this document consists of some of the latest works of spectrum sensing using machine learning from 
2018 to 2022.
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KEY TERMS AND DEFINITIONS

5G: The fifth generation of mobile networks.
Automatic Modulation Classification: Identifying the modulation type of a signal received over 

a communication link.
Convolutional Neural Network: A deep network architecture widely used for image classification. 

This deep model extract features directly from input data using its hidden layers.
Deep Learning: A subset of machine learning devoted to designing and implementing complex ar-

chitectures based on neural networks. This approach uses more training resources by including feature 
extraction techniques on their inner layers.

Image Processing: The design and development of algorithms applied to images to transform or 
obtain information from them.

Licensed Frequency: A frequency or range designated for a particular application or wireless com-
munication.

Machine Learning: A field of computer science and artificial intelligence devoted to using math-
ematical models for learning patterns from data without programming specific algorithms.

Narrowband: A narrow range of frequencies. A typical range for narrowband signals is 25 kHz or less.
Neural Network: An architecture widely used in machine learning inspired by the human brain. A 

neural network comprises multiple layers with neurons capable of creating models to recognize patterns 
from input data.

Primary User: The user with access to licensed frequencies in the spectrum.
Secondary User: The user who does not have access to licensed frequencies but can use them dy-

namically and opportunistically.
Spectrum Sensing: The detection of the presence or absence of a signal in a specific frequency band.
Wideband: A broad range of frequencies. Wideband signals generally have a bandwidth greater 

than 1 MHz.


