A Review of Spectrum Sensing D
Techniques Based on Machine Learning

Andres Rojas
https://orcid.org/0000-0003-1773-8514
Instituto Nacional de Astrofisica, Optica y Electronica, Mexico

Gordana Jovanovic Dolecek
https://orcid.org/0000-0003-1258-5176

Instituto Nacional de Astrofisica, Optica y Electronica, Mexico

INTRODUCTION

Wireless communication systems use the radio frequency (RF) spectrum as their propagation medium.
RF spectrum is divided into several bands occupying electromagnetic frequencies from 30 kHz to 300
GHz. The necessity of RF spectrum uses increases constantly due to the rapid growth of modern wire-
less communication systems. Several technologies, especially the deployment of the 5G network and the
Internet of Things (IoT), cause high demand for resources from the wireless spectrum for many devices
(Xu et al., 2020).

Most of the available RF spectrum has already been assigned to existing wireless systems resulting
in only an insignificant part of this spectrum can be given to new applications.

Cognitive radio (CR) aims to reinforce the utilization of the underutilized RF spectrum. These fre-
quency bands are assigned to licensed or primary users (PU) but are not utilized in some locations or
time instants. Therefore, unlicensed, or secondary users (SU) can use this spectrum.

One of the principal operations of CR is spectrum sensing (SS), consisting of dynamic monitoring
and employing underutilized spectrum without interfering with PUs.

This chapter proposes a survey of current spectrum sensing (SS) research involving the application
of machine learning techniques. The extensive review included in this document mainly focuses on deep
learning architectures and image processing techniques that can help improve CR systems’ detection
probability to maximize the underutilized RF spectrum in 5G. This article aims to check the newest
research about spectrum sensing techniques reported in the literature, which apply images or time series
as input for different deep learning architectures whose main task is to classify the spectrum as occupied
or non-occupied.

A current trend, automatic classification modulation (AMC), is also included in this review. It is
closely related to SS by recognizing the spectrum availability and classifying the signal type currently
using the licensed band of interest. This chapter is helpful for comparison of the current tendencies in
spectrum sensing in terms of signal simulation, including different analog and digital modulation types,
image-based approaches such as covariance matrix or spectrogram, and wireless channel simulations.
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BACKGROUND

Cognitive radio is a new design paradigm of wireless communications systems that aims to maximize
the use of the underutilized RF spectrum. Simon Haykin defines cognitive radio as a wireless com-
munications system that is intelligent and aware of its environment. It uses a methodology by which it
learns from the environment and adapts to statistical variations in the input stimulus (Captain & Joshi,
2021; Haykin, 2005). This definition has two main objectives:

e  Highly reliable communication when and where needed, and
e  Efficient use of the radio spectrum.

Cognitive radio intends to manage and execute real-time operations to adjust its behavior and deal with
the increasing demands of RF spectrum and spectrum shortage caused by fixed frequency assignments
(Prasad et al., 2008). SU or CR users are allowed access to bands of licensed spectrum assigned to PUs
if they do not cause destructive interference. In a cognitive radio network (CRN), the SU or unlicensed
user can temporarily access the spectrum not occupied by the PU; therefore, it is critical to determine
whether the PU is present or not, and spectrum sensing is a crucial prerequisite for CR (Xu et al., 2020).
Three possible cognitive radio implementation models exist: interweave, underlay, and overlay. Due to
the popularity of the interweave model and standardization efforts by IEEE on IEEE 802.11 and IEEE
802.11af standards, this type is detailed below (Captain & Joshi, 2021).

Interweave model: In this model, secondary users can access the licensed spectrum only when
primary users do not use it. A licensed spectrum that is not in use is called a spectrum hole. Second-
ary users must dynamically identify spectrum holes. Once the primary user begins transmitting on the
licensed band again, the secondary user must immediately abandon the licensed spectrum without any
interference with PU.

Spectrum Sensing

One of the purposeful requirements of the SU is to exploit the underutilized spectrum without destructive
interference to PU. In addition, a PU is not required to share the spectrum with SUs. Therefore, SUs must
be able to detect holes in the spectrum independently of PU before using the licensed spectrum. During
the use of that band, the SU needs to monitor constantly if any PU is active in that band, and if that is the
case, it needs to abandon that band immediately. As a result, efficient spectrum sensing techniques are
required to minimize interference with the PU while maximizing spectrum utilization (Captain & Joshi,
2021). There are three types of spectrum sensing, narrowband spectrum sensing, wideband spectrum
sensing, and cooperative spectrum sensing.

Narrowband Spectrum Sensing

Narrowband spectrum sensing finds whether a single PU-licensed band is available for SU. The simpli-
fied signal detection problem can be explained in terms of two hypotheses H and H,. Hypothesis H;
means that only noise is received while the PU signal is missing. Similarly, the hypothesis H, states that
not only noise but also PU signals are observed. Denoting the received signal at the signal detector as
y(n) and the PU signals observed by SU as x(), we have:



H,: y(n)=w(n)
H,: y(n)=x(n)+w(n)

where w(n) is zero mean additive white Gaussian noise (AWGN), and n denotes the time index.

Due to the unpredictable noise, the probability of detecting PU called a false alarm P,, is increased
when it is not present. As a result, the probability of correctly detecting the PU signal when it is present,
denoted as P, is low.

Ideally, it is desirable to have P, =1 and P,=0; however, this is impossible in a low signal-to-noise
ratio (SNR) environment. More sophisticated and efficient techniques exist for narrowband spectrum
sensing techniques like matched filter, covariance-based, cyclostationary, energy, and wavelet detection
(Jain et al., 2019).

Wideband Spectrum Sensing

Since the wideband spectrum consists of many narrow sub-bands, multiple bands should be evaluated to
find spectrum holes. As a result, narrowband sensing techniques cannot be directly used for performing
wideband spectrum sensing because they make a single binary decision for the whole spectrum and thus
cannot identify individual spectral holes within the wideband spectrum (Ahmad, 2020).

Wideband spectrum sensing can be classified into two classes based on the sampling rate: Nyquist
wideband spectrum sensing and sub-Nyquist wideband spectrum sensing.

In wideband spectrum sensing, the wideband signal is obtained using an analog-to-digital converter
(ADC), which samples the broadband signal at the Nyquist sampling rate. Next, signal processing tech-
niques are used to detect the spectrum holes. However, the problem arises because the required sampling
rate is very high and requires high computational complexity and detection time. Consequently, Nyquist
wideband sensing imposes significant challenges for required hardware operating at a high sampling
rate and efficient high-speed algorithms (Yang et al., 2018).

Sub-Nyquist wideband spectrum sensing samples only a fraction of the entire bandwidth and ignores
the remaining part. This behavior is applied when the SU might only be interested in finding various
spectrum holes rather than all spectrum opportunities in a wideband cognitive radio network (Sun &
Laneman, 2014).

Cooperative Spectrum Sensing

Cooperative spectrum sensing (CSS) enhances the sensing performance by exploiting the spatial diver-
sity of multiple CR users at the expense of cooperation overhead. Multiple SUs, also called cooperating
secondary users (CSU), collaborate by sharing their information to detect spectrum opportunities. CSS
is divided into three categories: centralized, distributed, and relay-assisted (Akyildiz et al., 2011).

In summary, the following figure presents a diagram with all the mentioned classifications on spec-
trum sensing.
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Figure 1. Spectrum sensing classifications
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REVIEW OF MOST RECENT TECHNIQUES

Recently, there has been an increasing interest in applying machine learning methods to different en-
gineering problems for which the development of conventional solutions is challenged by modeling or
algorithmic complexity (Simeone, 2018). Machine learning (ML) is a branch of artificial intelligence
(AI) and computer science that develops algorithms to learn from data. These algorithms can solve
problems by learning from data and creating a model or set of rules to predict an outcome based on
features (Rebala et al., 2019).

Deep learning (DL) is a subset of ML where feature extraction is performed along the training process
(Chew & Cooper, 2020). DL is, at this time, one of the most popular research directions from ML and
has reached great achievement in many fields, such as natural language processing, computer vision, and
speech recognition (Yang et al., 2019). Artificial neural networks (NN) are the most popular supervised
ML models; they can be divided into two variants, traditional and deep architectures (Khamayseh &
Halawani, 2020). Traditional NN is constituted of three layers, input, hidden, and output; however, this
type has the problem of an excessive number of parameters (Xu et al., 2022).



Deep structures have a feature learning part in their inner layers, so the network selects features by
itself (Xu et al., 2020). Convolutional neural networks (CNN) are deep NN used extensively for image
classification and analysis (Nair & Narayanan, 2022).

Spectrum sensing is a binary classification task where secondary users must classify the presence
or absence of the primary user. As a result, the most recent SS methods generally use ML techniques to
perform this classification. Three main types of ML-based include unsupervised learning, supervised
learning, and reinforcement learning.

The literature review demonstrates that authors mainly used supervised machine learning-based ap-
proaches, i.e., ML first generates a model based on processing the dataset and then predicts the label of
a new input data point by executing that model (Rebala et al., 2019). The classification of supervised
machine learning-based techniques included in this survey is presented below.

Image-based approaches: This approach consists of using any image as input. An image is a 2-D
signal or matrix with information in two coordinates. Many types of images can be created to be applied as
input for spectrum sensing systems, including spectrograms, covariance matrices, constellation maps, etc.

Time series-based approaches: This approach applies 1-D signals as input for spectrum sensing
systems. This signal or vector could be a direct measurement of the amplitude of a wireless signal or any
type of transformation, such as the power spectrum through the Fourier transform. Many authors apply
other kinds of transformations intending to extract relevant features for classification.

Automatic modulation classification: Spectrum sensing addresses the problem of detecting the
presence or absence of a signal by analyzing the frequency spectrum. A similar concept is automatic
modulation classification (AMC). This process detects the presence of a signal and classifies the signal
modulation type from the spectrum samples or images. AMC approaches could be image-based or time
series-based.

In summary, the following figure presents a diagram with all the mentioned approaches to machine
learning-based spectrum sensing and their subdivisions in terms of spectrum sensing types.

Image-Based Approaches
From the point of view of machine learning for images, several works have been reported in the literature.
Non-Cooperative Narrowband

Pan et al. (2020) proposed a spectrum sensing method based on deep learning and cyclic spectrum, which
applies the benefits of a CNN to an image obtained from an orthogonal frequency division multiplexing
(OFDM) signal. The OFDM signal was analyzed, and the cyclic spectrum was obtained using a smooth-
ing fast Fourier transform (FFT) accumulation algorithm (FAM). This spectrum is normalized to process
the gray-scale image corresponding to the cyclic autocorrelation. A CNN based on a classic LeNet-5
model was applied for the learning phase. The novelty of this method was the application of the cyclic
spectrum, which is an inherent feature of OFDM signals. Another CNN-based approach is presented
by Xie et al. (2019), which does not require information regarding the probabilistic model of the signal,
noise, or pattern of PU activity. This work takes advantage of the present and historical data, which are
represented through covariance matrices (CM) used as the input for a CNN to train the algorithm with
both current information and the pattern of PU activity originating from a semi-Markov model approach.
CMs are considered images in this work. Another work that applies the sample covariance matrix as the
input for a CNN is reported by C. Liu et al. (2019), proposing a covariance matrix-aware CNN (CM-
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Figure 2. Machine learning-based spectrum sensing techniques
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CNN)-based spectrum sensing algorithm. This paper formulates the structure of the CM-CNN method
and theoretically proves that this approach is equivalent to the optimal estimator-correlator (E-C) detector.

A combination between CNN and Long-Short Term Memory (LSTM) has been proposed by Xie et
al. (2020), which applies the CNN to extract energy-correlation features from the covariance matrices
(images) generated by the sensing data. Then the series corresponding to multiple sensing periods are
input into the LSTM to learn the PU activity pattern. The purpose of learning the PU activity pattern is
to promote the detection probability further. This algorithm is evaluated in scenarios with and without
noise uncertainty. A similar combination reported by Chen et al. (2022) employs the covariance matrix of
the signals received into an LSTM classification model (CM-LSTM) to achieve fusion learning of spatial
correlation and temporal correlation features of the signals. The CM-LSTM algorithm can simultaneously
learn the spatial correlation features of multiple signals received by an antenna array and the temporal
correlation features of single signals providing two options that work together for classification purposes.

The spectrum sensing problem is transformed into an image recognition problem by Chew and Cooper
(2020), employing a well know CNN, AlexNet. This CNN is re-purposed to sense the energy spectrum
using a small training set of a few hundred samples. Another advantage of this detector is that it does
not require noise floor measurements. This work demonstrates how fine tuning can quickly re-purpose
an existing CNN to perform a new task seemingly unrelated to the original one. Similarly, the paper
reported by Liu et al. (2021) utilizes a Deep convolutional generative adversarial network (DCGAN) to
expand the training set to overcome the shortage of sample data. The sampling covariance matrix of the
received signal is transformed into a true color image. After that, the obtained training set is expanded
with the DCGAN. Finally, the LeNet network (a CNN) is trained based on this extended data.



Regarding spectrograms used as input for SS systems, Lees et al. (2019) investigate the performance
of thirteen methods for SPN-43 radar detection using a library of over 14,000 3.5 GHz band spectro-
grams. Comparing classical methods from signal detection theory and machine learning to several deep
learning architectures demonstrates that ML algorithms outperform classical signal detection methods.
A three-layer CNN offers a superior tradeoff between accuracy and computational complexity. Similarly,
Chen et al. (2021) exploit the time-frequency domain information of signal samples using the short-time
Fourier transform (STFT) and CNN. This blind spectrum sensing STFT-CNN method has no require-
ments for the PU signal and considerable SNR-robustness.

Gai et al. (2022) proposed an interesting approach that utilizes a residual cellular network (ResCel-
Net), involving a dual-branch convolution structure, improving the feature extraction ability. The addition
operation enhances the micro-feature information, and residual learning is adopted to facilitate training
of the deep spectrum sensing network. The received signals are reshaped into a matrix, normalized to
gray levels, and used as the network’s input (images). Then the feature information of gray-scale images
is extracted, and the network is trained through dual-branch convolution and residual learning. The fol-
lowing table presents a comparison between the works detailed in this subsection.

Cooperative Narrowband

The cooperative sensing approach in Nair and Narayanan (2022) introduces a technique to check the
availability of spectrum based on spectrograms received from the primary user. It trains a CNN model
to detect whether it is a signal or noise. Regularization methods helped to increase the model’s gener-
alization ability, and they could discriminate the newer untrained signal patterns from the noise signal
patterns. Another cooperative sensing method presented by Lee et al. (2019) combines the individual
sensing results of the SUs who learn autonomously with a CNN using training sensing samples. Both
spectral (frequency bands) and spatial correlation (SUs received signal strength (RSS)) of individual
sensing outcomes are considered such that an environment-specific CSS is enabled in deep cooperative
sensing (DCS).

The ensemble approach by H. Liu et al. (2019) for CSS in an OFDM signal-based cognitive radio
system also utilizes images as input for a CNN architecture. In this case, images are created through
spectral coherence density (SCD), visualizing second-order correlation features, which will be used
for classification. The PU detection of an OFDM signal is transformed into an SCD plane, i.e., image
processing. The bagging strategy was employed to establish the training database between CSUs.

The Deep Reinforcement Learning (DRL) based algorithm proposed by Sarikhani and Keynia (2020)
applies cooperative spectrum sensing using reinforcement learning to choose the needed SUs to cooper-
ate and DL in each SU to sense the presence or absence of the PU locally. The reinforcement part of the
algorithm determines the required SU to share its measurements and local sensing results.

Adbversarial transfer learning is applied to spectrum sensing in Miao et al. (2022), where the model is
pre-trained at the central node first and fine-tuned at the local nodes. This work constructs a 2D dataset
of the observed signal under various SNRs. Then a part of the samples with multiple SNRs in the dataset
is employed to pre-train the CNN model. After that, the pre-trained CNN model is distributed to local
nodes with different SNRs, and the pre-trained model is fine-tuned, resulting in more robust adaptability
atthe local node. The following table presents a comparison between the works detailed in this subsection.
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Non-Cooperative Wideband n

A signal localization task performed by West et al. (2021) addresses the problem of wideband spectrum
sensing, which requires detecting potentially multiple signals within the sample bandwidth at arbitrary
center frequencies, offsets, and time bounds. This research applies semantic segmentation directly analo-
gous to the radiometer task of detecting whether a time/frequency bin contains a signal or no signal. In
image processing, the input image (in this case, a log-magnitude spectrogram) is classified per pixel on
the output with the exact resolution as the input image.

The research by Nguyen et al. (2018) presented an energy detector applied to the STFT of a wideband
signal to produce a binary spectrogram. Bounding boxes for narrowband signals are then identified us-
ing image processing techniques on a block of the spectrogram at a time. These boxes are also tracked
along the time axis and fused with the newly detected boxes to provide an online system for spectrum
sensing. Fast and highly accurate detection is achieved in simulations for various signals with different
hopping patterns and speeds. Another work based on a spectrogram is presented by Lietal. (2019), which
proposes a temporal-frequency fusion network for precise spectrum energy level prediction considering
heterogeneous data from multiple domains. This system detects signals from the raw spectrogram using
an image processing-based robust signal detection procedure based on a modified Otsu thresholding
algorithm. The temporal and frequency data for the prediction model automatically capture the intra-
spectrum correlations employing an LSTM network. Finally, Zha et al. (2019) proposed a DL framework
capable of detecting and recognizing signals. Time-frequency spectrograms are exploited for wideband
spectrum sensing, and eye diagrams and vector diagrams are used for the modulation classification task.
Their network model includes single-shot multi-box detectors (SSD), CNN, and ResNet. The following
table presents a comparison between the works detailed in this subsection.

Time Series-Based Approaches

The literature review of recent articles from 2018 to 2022 showed that although images have been used
extensively for spectrum sensing, time series are still applied in multiple projects compiled in this section.

Non-Cooperative Narrowband

The research reported by Xu et al. (2020) employs a one-dimension time signal instead of an image as
the input to a parallel CNN-LSTM network; this approach does not require prior knowledge about the
information of the licensed user or channel state. A combination of CNN, LSTM, and fully connected
neural networks proposed by Yang et al. (2019) found that the trained deep neural network learned from
typical radio signals and its filters behaved like a matched filter. This work also analyzed the kernel size,
the number of filters for the 1D-CNNs, and the effect of multiple LSTM layers obtaining the optimal
signal detection performance when this number is 2. The following table presents more details regard-
ing these papers.
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Cooperative Narrowband n

A combination between CNN and the gate recurring unit (GRU) has been reported by Xu et al. (2022).
This work first applies CNN to extract spatial features and GRU for temporal characteristics; then a
combination network receives these data to obtain a cooperative result based on a mixture of both types.
The final network, called Combination-Net, improves the reliability of spectrum sensing by merging
perception information from multiple collaborative nodes. Another approach that uses 1-D signals in-
stead of images is presented by Gao et al. (2019), proposing a DL-based signal detector that exploits the
underlying structural information of modulated signals requiring no prior knowledge about channel state
information or background noise. Additionally, this research proposes a DL-based cooperative detection
to take advantage of the soft information from distributed sensing nodes. The following table presents
more details regarding these papers.

Non-Cooperative Wideband

Two methods based on Wavelets and the Higuchi fractal dimension (HFD, a non-linear measure) were
applied by Molina-Tenorio et al. (2019) to address wideband spectrum sensing. The multiresolution
analysis (MRA) approach detects edges on 1D signals obtaining the available holes in the wideband
spectrum. The classification procedure in this study utilized a simple decision threshold based on HFD
applied over a frequency version of the input data.

The non-cooperative wideband detection approach proposed by Lin et al. (2022) jointly detects the
signal presence and estimates their center frequencies and bandwidths. The DL architecture called Sig-
detNet includes signal preprocessing, enhancement, feature extraction based on neural networks, and
postprocessing. This system comprises a convolutional encoder-decoder network with an embedding
pyramid pooling module (CNN and residual block-based) constructed to extract informative features re-
lated to signal detection from multiscale. The following table presents more details regarding these works.

Automatic Modulation Classification
This survey also includes the following works because they provide essential insight regarding spectrum

sensing and its possibility to classify the signal type using multiple signal processing and deep learning
techniques.

11



A Review of Spectrum Sensing Techniques Based on Machine Learning

sreugis Jo sylpimpueq pue
‘sorouanbaiy 1o11IRd ‘IoqUINU SISIND IS “MSdT
: : 9110d0a1 10 © 0 NSt SOLIOS QT ‘Te 30 ‘ur
oy s1o1pard pue jndur oy se pai 10N 4ap 07 %06 1ONIeds!S ! 1L SO S SISVZ 0T (LRSS
BIEP JY SQAI02I JONI(JSIS
ploysaiyp
UoIS19p (4H) uorsuawiq S[OQUIAS [Bal TR
[e30L IYoNSIH e Sulsn paviodarioN qP 01 %86 VIN SOHRS L Ty NaD-ZaN ‘a0 610 OLIOUQ -eUT[OJA]
pawiojrad uoryedryisse[)
UIUWINIO, i doueuLiopdd yoeodde ndu S[eusis paje[nuur Ied 3PN
’ D UO01)II)IP IFRINAY uordIAP I1SAYSIH Suruaedy daaq nduy [EUSS pajenuns A PV

(paspq-sa11as aui1}) SYL0M puUpqapin 2a1p1adood-uou Jo uostvduio)) -9 ajqu[

YD pue
NND Jo seniiqedes Surjopour . > ,%E,«w
Kreyuowrardwos o) Sunrordxe payiodar joN ap 02- 1® %6°€6 MID ‘NND sotres awiy, | N@,ﬁ« Oo ,:2< 7202 Te 19 ‘nx
SOIN)EDJ S)ORIXA JIOMION AT ,Mmm ,Mmmm
UOTRUIqUIO)) SQINJEJNNIA ASV8 ASVY
(NNA'TD) HomwpN [eusts . . ¢E<m
[eanaN doo wiidl-110ys Suo payodar JoN qp $'8- 1® %06 NNAT1D x9[dwos urewop . AS49 wo2< 610T ‘e 19 ‘oeD
[eUOTIN[OAUO)) QuIT) PAZIeWLION | o:r\f.\O vmmrTEU
MSd8 MSdO MSdd
U UILLIO . douruLIopad yoeoxdde ndu s[eusis pajenuul Ied NI
v D UO0I)IINIP AFRINY u01)2933P ISAYSIH Suruaed) daaq nduy [BUSIS pajeauls A POy
(paspq-sa11as auil]) SYL0M pungmodivu 2a13p412dood Jo uostpduio?) "¢ 2]quy[
— PINVO TEWVO
WIS T-NND [PIered paiodar JoN paty1oads 10N INLST ‘NND SOLIOS QWIL], 9TINVO ‘AT MSdO 020c ‘Tee nx
Sdd ISV SV
I9)[1J payodrewr e (D)
B 9YI] 9ABYq JI0MIaU paiodar 0N dp £-18 %9Y°66 INLST ‘NND SOLIOS QUIL], Kouonba oyerpawIoIu] 610¢ Te 10 Suex
doop oy woay s1AIg :
LELL () ouh pouruLIop1d yoeoxdde ndu S[eusis pajenuur Ied NI
v D UO0I)II)IP IFRINAY U01)I333P ISAYSIH Surured) deaq ncur TeUSES pajerauns A PO

(paspq-sa11as aull}) SYL0M pUDGMOLIDUY 241ID12d00I-uouU Jo U0SIIDAWO)) “t 2]qD]

12



Image-Based Approaches

An exciting approach of DL for detecting and classifying RF signals was presented by Elyousseph
and Altamimi (2021). The main advantage is identifying a signal presence without complete protocol
information and detecting or classifying non-communication waveforms such as radar signals. In this
work, a hybrid image is proposed taking advantage of both time and frequency domain information and
facing the classification as a computer vision problem. Another AMC-based work reported by Yakkati
et al. (2021) proposes a multiscale DL-based approach. The method considered the fixed boundary
range-based empirical Wavelet transform (FBREWT) based multiscale analysis technique to decompose
the radio signal into sub-band signals or modes. The sub-band signals computed from the radio signal
combined with the CNN are used to classify modulation types. The approach is tested using the radio
signals of different SNR values and four different channel types including AWGN, a combination of
Rayleigh fading and AWGN, a combination of Rician flat fading and AWGN, and a combination of
Nakagami-m fading and AWGN. A different approach utilizing the benefits of collaborative spectrum
sensing and deep learning has been reported by Chen et al. (2020). Although this work does not directly
deal with the spectrum sensing problem; it provides more insight into image processing approaches such
as semantic segmentation to identify the coverage range of RF emitters converting three-dimensional
sensing data into a series of two-dimensional image slices. The following table resumes these works
and includes more details.

Time Series-Based Approaches

Soltani et al. (2019) proposed a software implementation that utilizes Android smartphones with Tensor-
Flow Lite for modulation classification. This system runs a GPU-trained deep CNN for an SNR-based
classification scheme to characterize modulation codes for spectrum management. This implementation
also proposed a labeling mechanism derived from the insight about confusion matrices of modulation
classes learned from previous training procedures.

An AMC method using a waveform-spectrum multimodal fusion (WSMF) method based on deep
residual networks (ResNet) is reported by Qi et al. (2020). After extracting features from multimodal
information using Resnet, this approach adopts a feature fusion strategy to merge multimodal parts
of signals, such as IQ data, envelope data, and spectrum data, to obtain more discriminating features.
Another AMC approach by Han et al. (2021) uses time-series signals which are transformed into mul-
tiple domains, including the frequency domain, by FFT and Welch power spectrum analysis. A stacked
auto-encoder (SAE) was used for detailed and stable frequency-domain feature representations (feature
fusion). A probabilistic neural network (PNN) was implemented for automatic modulation classifica-
tion for a complex electromagnetic environment with high noise levels and significant dynamic inputs.

A convenient way to perform continuous spectrum sensing is the prediction of spectrum occupancies,
which is addressed in Aygiil et al. (2022) by employing a DRL algorithm. This system exploits DRL
algorithms to teach the base station (BS) how to independently predict spectrum occupancies straight
from power spectral density data (time series and images). The following table resumes these works
and includes more details.
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SOLUTIONS AND RECOMMENDATIONS

Since this work was mainly developed to obtain insight into the image processing techniques currently
applied for spectrum sensing and automatic modulation classification, this section presents more infor-
mation regarding this specific area of digital signal processing.

In general, authors apply images as input for a spectrum sensing system. One of the main choices
is the spectrogram, which provides information in both time and frequency domains in a matrix form.
This method utilizes the STFT and has been proven efficient in several works in both narrowband and
wideband spectrum sensing (Chen et al., 2021; Chew & Cooper, 2020; Lees et al., 2019; Li et al., 2019;
Nair & Narayanan, 2022; Nguyen et al., 2018; West et al., 2021; Zha et al., 2019). Another popular image
used for spectrum sensing is the covariance matrix, applied in multiple works (Chen et al., 2022; C. Liu
etal., 2019; Liu et al., 2021; Miao et al., 2022; Xie et al., 2020; Xie et al., 2019). This matrix represents
the correlation between signals received in multiple time slots or by multiple receptor antennas (coop-
erative SS). The main idea behind applying the covariance matrix is to discriminate signal correlation
from noise correlation, which usually tends to have higher values. Other types of images used for SS
include the 2-D cyclic autocorrelation gray map proposed by Pan et al. (2020), and the received signal
observation matrix in Gai et al. (2022), both used for non-cooperative narrowband SS. For cooperative
approaches, the spectral coherence density (SCD) plane was proposed by H. Liu et al. (2019), the matrix
of accumulated received signal strength (RSS) of SUs from different bands by Lee et al. (2019), the
energy measurement matrix by Sarikhani and Keynia (2020), and eye diagrams and vector diagrams in
Zha et al. (2019). These works create matrices from wireless signals taking advantage of their energy,
spectral, or spatial properties (constellation), which will inherently be related to a difference between
the transmitted signal and the background noise.

Image Processing Techniques Review

The image processing techniques applied to input images (matrices) are usually implemented for wide-
band spectrum sensing. A robust signal detection procedure based on a modified Otsu thresholding al-
gorithm is proposed by Li et al. (2019). In the research presented by West et al. (2021), the input image,
a log-magnitude spectrogram, is classified per pixel on the output with the same resolution as the input
image using semantic segmentation, which is directly analogous to detecting whether a time/frequency
bin contains a signal or no signal. Image enhancement is utilized by Zha et al. (2019), considering signal
aggregation degree and enhancing the traditional eye and vector diagram by using a specific formula and
scaling factors. The image details from these diagrams become more prominent utilizing this technique.
A wideband SS approach based on image processing is reported by Nguyen et al. (2018), applying sev-
eral methods, including binarization, morphology operators, and connected components labeling. These
algorithms were effective for fixed-frequency and frequency-hopping signals.

Deep Learning Techniques Review

Deep learning techniques are mainly used for spectrum sensing since they provide accurate results when
assessing low SNR scenarios.

Convolutional neural networks (CNN) are the first choice for DL-based systems, as can be noticed in
Chen et al. (2021), Chew and Cooper (2020), Lees et al. (2019), C. Liu et al. (2019), Liu et al. (2021),
Pan et al. (2020), Xie et al. (2020); Xie et al. (2019), Xu et al. (2020), and Yang et al. (2019) which ad-
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dressed non-cooperative narrowband SS. In contrast, Lee et al. (2019), H. Liu et al. (2019), Miao et al.
(2022), Nair and Narayanan (2022), Sarikhani and Keynia (2020), and Xu et al. (2022) focus on coop-
erative narrowband SS. In wideband spectrum sensing, only the work of Zha et al. (2019) utilized CNN.

AMC also has multiple examples of CNN-based approaches, such as Elyousseph and Altamimi (2021),
Han et al. (2021), Qi et al. (2020), Soltani et al. (2019), and Yakkati et al. (2021).

Long-short-term memory (LSTM) models are less applied since generally they are helpful for 1-D
signals or time series inputs, such as the works reported by Yang et al. (2019) and Xu et al. (2020) both
these works combine CNN and LSTM. Another combination of CNN and LSTM called CLDNN was
applied by Gao et al. (2019) for cooperative SS. However, a 2-D version of LSTM for images is proposed
by Chen et al. (2022), Lees et al. (2019), Li et al. (2019), and Xie et al. (2020). Another recurrent model
based on a GRU was reported by Xu et al. (2022).

Residual networks have also been proposed in the literature, specifically ResCelNet by Gai et al.
(2022) and SigDetNet by Lin et al. (2022). Deep reinforcement learning is also present in this survey
(Aygiil et al., 2022; Sarikhani & Keynia, 2020). Finally, U-net is another type of DL model applied for
segmentation in detecting modulated signals in a log-magnitude spectrogram (West et al., 2021).

FUTURE RESEARCH DIRECTIONS

The future seems promising for more DL-based approaches, such as residual networks, which are the latest
models proposed in current works in the literature. 5G establishes the need for better spectrum utilization
since more devices will demand more resources. To address this situation, many authors have proposed
SS and AMC systems capable of obtaining a high probability of detection over low SNR scenarios.

An exciting trend found during the development of this paper was a combination of spectrum sens-
ing and spectrum prediction. The latter stands for techniques to learn from the spectrum via LSTM or
another type of recurrent network, the PU’s spectrum usage patterns. By predicting the subsequent PU
frequency band, it would be “easier” for the SU to avoid that band and choose another for their use.

Another future path will be the study and possible implementation of cooperative wideband spectrum
sensing, which has yet to be reported in the literature until the development of this document. This has
yet to be studied and can be considered a future research direction for interested parties. This SS branch
could be helpful for wideband approaches since it exploits the inherent advantages of cooperative SS
while covering a broad frequency band. However, it must be noted that the lack of work regarding this
branch can also indicate that these types of SS systems are only partially affordable or could be too slow
to work on real scenarios.

CONCLUSION

Spectrum sensing is crucial to cognitive radio and should be as accurate as possible. Deep learning
techniques improve the functionality of different spectrum sensing approaches for both narrowband and
wideband SS. This paper focused on image processing and deep learning techniques as the main com-
ponents of spectrum sensing systems. A wide variety of methods have been included in this document,
such as narrowband, wideband, and cooperative spectrum sensing approaches. State of art included in
this document consists of some of the latest works of spectrum sensing using machine learning from
2018 to 2022.
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KEY TERMS AND DEFINITIONS

5G: The fifth generation of mobile networks.

Automatic Modulation Classification: Identifying the modulation type of a signal received over
a communication link.

Convolutional Neural Network: A deep network architecture widely used for image classification.
This deep model extract features directly from input data using its hidden layers.

Deep Learning: A subset of machine learning devoted to designing and implementing complex ar-
chitectures based on neural networks. This approach uses more training resources by including feature
extraction techniques on their inner layers.

Image Processing: The design and development of algorithms applied to images to transform or
obtain information from them.

Licensed Frequency: A frequency or range designated for a particular application or wireless com-
munication.

Machine Learning: A field of computer science and artificial intelligence devoted to using math-
ematical models for learning patterns from data without programming specific algorithms.

Narrowband: A narrow range of frequencies. A typical range for narrowband signals is 25 kHz or less.

Neural Network: An architecture widely used in machine learning inspired by the human brain. A
neural network comprises multiple layers with neurons capable of creating models to recognize patterns
from input data.

Primary User: The user with access to licensed frequencies in the spectrum.

Secondary User: The user who does not have access to licensed frequencies but can use them dy-
namically and opportunistically.

Spectrum Sensing: The detection of the presence or absence of a signal in a specific frequency band.

Wideband: A broad range of frequencies. Wideband signals generally have a bandwidth greater
than 1 MHz.
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