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ABSTRACT

The classifier chains algorithm is aimed at solving the multilabel classification problem by composing the 
labels into a randomized label order. The classification effect of this algorithm depends heavily on whether 
the label order is optimal. To obtain a better label ordering, the authors propose a multilabel classifier 
chains algorithm based on a maximum spanning tree and a directed acyclic graph. The algorithm first uses 
Pearson’s correlation coefficient to calculate the correlation between labels and constructs the maximum 
spanning tree of labels, then calculates the mutual decision difficulty between labels to transform the 
maximum spanning tree into a directed acyclic graph, and it uses topological ranking to output the optimized 
label ordering. Finally, the authors use the classifier chains algorithm to train and predict against this label 
ordering. Experimental comparisons were conducted between the proposed algorithm and other related 
algorithms on seven datasets, and the proposed algorithm ranked first and second in six evaluation metrics, 
accounting for 76.2% and 16.7%, respectively. The experimental results demonstrated the effectiveness of 
the proposed algorithm and affirmed its contribution in exploring and utilizing label-related information.

Keywords
classifier chains, directed acyclic graph, maximum spanning tree, multilabel classification, Pearson correlation 
coefficient

INTRODUCTION

Unlike the traditional single-label classification problem, the multilabel classification (MLC) problem 
allows a sample to simultaneously have multiple label categories. (For example, a news article can 
belong to the topics of both technology and culture.) This ability means multilabel classification 
problems can reflect many real-world problems. Examples include text classification (Liu et al., 
2021; Minaee et al., 2021; Nam et al., 2014), video annotation (Markatopoulou et al., 2018), image 
annotation (Lanchantin et al., 2021; Zhu et al., 2017), music classification (Tiple et al., 2022), and 
protein function prediction (Guan et al., 2018). In practical production applications, labeling samples 
by hand is difficult and expensive. Thus, solving the multilabel classification problem is valuable.
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A straightforward solution to MLC is the binary relevance (BR) algorithm (Boutell et al., 2004). 
It transforms the original multilabel problem into a series of single-label problems. This algorithm, 
however, although simple and efficient, does not utilize the information brought between the labels 
and therefore does not obtain better classification results. It is practicable to improve the multilabel 
classification accuracy by using the information hidden between the labels. Typical approaches 
include stacked binary relevance (2BR) (Godbole & Sarawagi, 2004), classifier chains (CC) (Read 
et al., 2011), multilabel k-nearest neighbor (ML-kNN) (Zhang & Zhou, 2007), rank support vector 
machine (RankSVM) (Elisseeff & Weston, 2001), among others.

The CC algorithm uses labels as additional features to exploit the correlation information between 
the labels. The specific practice is to select a label ordering, and all the labels are ranked before the 
target labels are used as additional features to participate in the training and predict the target label to 
finally obtain a multilabel classifier chains. The key desired outcome of using the CC algorithm is to find 
the optimal label ordering. If the predecessors of a label are highly correlated to it, then the additional 
features can help improve the performance of the corresponding classifier. The traditional CC algorithm 
determines the label ordering randomly, which has low classification performance and low robustness. 
To solve the this problem, many variant algorithms of the CC algorithm have been proposed such as 
probabilistic classifier chains (PCC) (Cheng et al., 2010), ensemble classifier chains (ECC) (Rokach, 
2010), conditional entropy-based classifier chains (CEbCC) (Jun et al., 2019), and group sensitive 
classifier chains (GCC) (Huang et al., 2015). These algorithms improve the classification performance of 
CC algorithms, but the time complexity is high. Also, they mostly consider only the positive relationship 
between labels and ignore the negative correlation. Another problem to be considered is how to define 
the backward and forward order of two labels with correlation.

To address problems of the e CC-related algorithms, we propose a multilabel classifier 
chains algorithm based on a maximum spanning tree and directed acyclic graph (maxSTCC). The 
contributions of this paper are listed as follows:

1. 	 The Pearson correlation coefficient (Sinhashthita & Jearanaitanakij, 2020) is used to calculate the 
degree of correlation between the labels, and the absolute value is taken to consider both positive 
and negative correlations between the labels as correlations between the labels. An undirected 
weighted graph of labels is constructed, where the vertices represent labels, and the weights of 
the edges indicate the degree of correlation among connected labels.

2. 	 The maximum spanning tree algorithm is used to transform the undirected weighted graph of 
labels into a maximum spanning tree to maximize the utilization of the correlation information 
between labels.

3. 	 Conditional entropy is used to define the mutual decision difficulty between two connected 
labels in the maximum spanning tree, and it takes the direction with lower decision difficulty as 
the dependence direction between the two labels and finally transforms the maximum spanning 
tree of labels into a directed acyclic graph (DAG). This process solves the problem of how to 
order two related labels.

4. 	 To illustrate the contribution made by the maximum spanning tree, the classifier chains algorithm 
for constructing DAG based on conditional entropy (CEDAGCC) is proposed as a control algorithm. 
The algorithm directly constructs the directed cyclic graph (DCG) of labels by conditional entropy, 
and it then converts the DCG into DAG of labels by removing the rings in DCG.

5. 	 The labels in the DAG are realized as a label ordering using topological ordering, and the CC 
algorithm is used to train and predict based on that label ordering. The maxSTCC algorithm 
is experimentally compared with other related algorithms, and the experimental results show 
that the algorithm in this study can obtain more stable and excellent label ranking and better 
classification performance.
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RELATED WORK

Preliminaries

We let D x y i n
i i

= ≤ ≤{( , ) | }1 denote the training data set, which consists of n  instances and use 
x x x x
i i i i d
= [ , , , ]

, , ,1 2
  and y y y y

i i i i q
= [ , , , ]

, , ,1 2
  to denote the feature data and label data of the ith 

sample ( , )x y
i i

, where d  and q  denote the number of features and the number of labels, respectively. 
We let X x x x

n
T = [ , , , ]

1 2
  and Y y y y

n
T= [ , , , ]

1 2
  denote the feature dataset and label dataset and 

use L l l l
q

= { , , , }
1 2

  to denote the set of q  labels. When a training sample ( , )x y
i i

 is tagged with 
l
j
, then y

i j,
= 1 ; otherwise,y

i j,
= 0 .

Multilabel Classification
The utilization of information brought by the correlation between labels to improve the classification 
performance has been a research topic in recent years. According to the level of label correlation 
considered by multilabel classification algorithms, existing algorithms can be classified into first-
order strategies, second-order strategies, and higher-order strategies (Zhang & Zhou, 2013).

First-order strategies do not consider correlations between labels, they train and predict each label in 
turns. The BR algorithm and the ML-KNN algorithm are classification first-order strategy algorithms. The 
BR algorithm treats each label classification problem as a separate single-label problem and trains a classifier 
for each label using the full feature dataset. The ML-KNN algorithm handles the multilabel classification 
problem by making a simple improvement to the KNN algorithm. It counts the number of labels included in 
the k-nearest neighbors for each label independently without considering the dependencies between labels.

Second-order strategies examine correlations between pairs of labels. Multilabel algorithms 
included in this strategy have improved classification results compared with that of first-order 
strategies. The calibrated label ranking (CLR) algorithm (Fürnkranz et al., 2008) and the RankSVM 
algorithm are two second-order strategy algorithms. The CLR algorithm sorts and splits the labels by 
comparing them in order to deal with multilabel classification problems. The RankSVM algorithm 
measures the correlation between relevant and irrelevant label pairs by the label ranking loss function 
and constructs a convex quadratic optimization problem to solve the multilabel classification problem.

Higher-order strategies consider higher-order correlations between labels (e.g., the relevance of 
a label to all the remaining labels). Multilabel algorithms involved with higher-order strategies obtain 
the best classification results, but at the same time, the time complexity increases due increased label 
correlations. The 2BR algorithm and CC algorithm address the problem of the BR algorithm in that it 
cannot exploit label relevance by using labels as input features for the feature space. Both are higher-order 
strategy algorithms that can improve the BR algorithm. The BR algorithm considers label relevance by 
stacking two layers of the BR algorithm, where the predicted labels of the first layer are used as input 
features to the feature space of the second layer, and the predicted labels of the second layer are used 
as the final result. The CC algorithm trains the current label classifier by forming a chain of all labels 
ranked before that label as input features for the feature space to train the classifier. The label-related 
information is passed through the chain while retaining the low time complexity of the BR algorithm, 
but the classification effect of the CC algorithm is vulnerable to the label sequence.

The focus of this research is to establish an optimal sequence of label ordering for the improvement 
of the CC algorithm. The probabilistic classifier chains (PCC) algorithm (Cheng et al., 2010) finds the 
sequence of labels with the highest confidence by iterating all label orderings. This algorithm, however, 
can only be used for datasets with a small number of labels due to its high time complexity. The ECC 
algorithm determines the final prediction by training multiple chains of random classifiers and voting 
the prediction results of each classifier chains. The CEbCC algorithm first calculates the conditional 
entropy between labels and then counts the sum of conditional entropy of each label to rank them. The 
Bayesian chain classifiers (BCC) algorithm (Zaragoza et al., 2011) and the Bayesian network-based label 
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correlation analysis for multilabel classifier chain (BNCC) algorithm (Wang et al., 2021) determine the 
label ordering by building a Bayesian network of labels. The association rules-based classifier chains 
method (ARECC) algorithm (Jiaman et al., 2022) ranks labels by mining association rules between them.

CC Algorithm
The main task of multilabel classification is to establish the correspondence from the data feature 
space to the label space. Supposing h

j
 denotes the mapping of feature data X  to the jth label: 

h X l
j j
: ® , where l

j
 takes the value 0 or 1, then h

j
 is taken as the binary classifier for the jth label. 

The classical BR algorithm trains a separate classifier for each label independently for a total of q  
binary classifiers: h h h

q1 2
, , .

Using the label relevance to improve classification performance is the focus of multilabel 
classification research. To address the problem that the BR algorithm cannot utilize the label relevance, 
the CC algorithm introduces label relevance by using labels as an additional dimension of features. 
The specifics are shown in Table 1.

Table 1 illustrates the CC algorithm training process by an example with feature x  =[ . , . , . , . ]0 8 0 5 0 47 1 3  
and label y = [ , , , , ]1 0 0 1 0 , and label ordering l l l

1 2 5
, , , , where ¢x  denotes a new feature which is 

formed by the label as an input feature to x .
For the 1£ £j q  label, the following equation describes the training process of the CC algorithm.

{( , , , , ; ) | }
, , , ,

x y y y y i n h
i i i i j i j j1 2 1

1� �− ≤ ≤ 	 (1)

Similarly, the following equation describes the predicted label ŷ  of x .

ˆ [ˆ , ˆ , , ˆ ] [ ( ), ( , ˆ ), , ( , ˆ , ˆ , , ˆy x x x= = −y y y h h y h y y y
q q q1 2 1 2 1 1 2 1

   ))] 	 (2)

PROPOSED METHOD

Undirected Weighted Graph of Labels
The Pearson correlation coefficient is widely used to measure the degree of correlation between 
two variables and takes on a value between -1 and 1. When the value is 0, the two variables are not 
correlated at all. When its value is greater than 0, the two variables show positive correlation, and the 

Table 1. Training phase by CC algorithm

Classifiers Features ¢x Label Value

h
1

[ . , . , . , . ]0 8 0 5 0 47 1 3 1

h
2

[ . , . , . , . , ]0 8 0 5 0 47 1 3 1 0

h
3

[ . , . , . , . , , ]0 8 0 5 0 47 1 3 1 0 0

h
4

[ . , . , . , . , , , ]0 8 0 5 0 47 1 3 1 0 0 1

h
5

[ . , . , . , . , , , , ]0 8 0 5 0 47 1 3 1 0 0 1 0
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higher the positive correlation is, the closer the value is to 1. When the value is less than 0, the two 
variables show negative correlation; and the higher the negative correlation, the closer the value is to -1.

A small modification to the Pearson correlation coefficient is used to calculate the degree of 
correlation between two labels (Tsoumakas et al., 2009). The relevance of labels l

j
 and l

k
 in this 

paper is defined as follows:

f( , )
( )( )( )( )

l l
AD BC

A B C D A C B D
j k
=

−

+ + + +
	 (3)

whereA , B , C  and D  denote the four combinations of statistics for labels l
j
 and l

k
, respectively. 

The calculation formulae are as follows:

A y and y
i j i k

i

n

= = =
=
∑ , ,

1 1
1

  ��� ��� 	 (4)

B y and y
i j i k

i

n

= = =
=
∑ , ,

1 0
1

  ��� ��� 	 (5)

C y and y
i j i k

i

n

= = =
=
∑ , ,

0 1
1

  ��� ��� 	 (6)

D y and y
i j i k

i

n

= = =
=
∑ , ,

0 0
1

  ��� ��� 	 (7)

where ·��� ���  indicates that the entire bracket takes the value of 1 when the condition inside the bracket 
holds; otherwise, the value is 0.

In order to measure the correlation between labels more comprehensively, both negative and 
positive correlations between labels are considered as the correlation measure between labels. Then, 
by calculating the correlation degree between two labels, a label correlation matrix R  can be obtained 
and defined as follows:

R r l l j k q
j k j k

= = ≤ ≠ ≤[ | ( , ) |],
,

f 1 	 (8)

By calculating the correlation degree between labels a weighted undirected connected graph 
G=(V, E, W) can be constructed with labels as vertices and label correlations as weighted edges, 
where the set of vertices is V l l l

q
= { , , , }

1 2
 , the set of edges is E l l j k q

j k
= ≤ ≠ ≤{( , ) | }1 , and 

the set of edge weights is W w w l l r r R j k q
j k j k j k j k

= = = ∈ ≤ ≠ ≤{ ( , ) | , }
, , ,

1 . Then the adjacency 
matrix A  of the weighted undirected graph G of labels is

A
r r R j k q

j k qj k
j k j k

,
, ,

,
=

∈ ≤ ≠ ≤
≤ = ≤








  

    

1

0 1
	 (9)

The values in the adjacency matrix A  are the weights of the corresponding two vertices. For 
the weighted undirected graph G of labels the adjacency matrix A  is a symmetric matrix.
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Maximum Spanning Tree of Labels
A connected graph without loops is called a tree, and a spanning tree is a connected spanning subgraph 
of an undirected connected graph without loops. As an important problem in the graph theory, the 
spanning tree is widely used in fields such as network optimization, data structure, engineering, and 
combinatorial optimization. The spanning tree with the largest sum of edge weights among all spanning 
trees of a graph is the maximum spanning tree. Commonly used maximum spanning tree algorithms 
include Kruskal’s algorithm, Prim’s algorithm, and the broken circle method. We use the idea of the 
Prim algorithm to construct the maximum spanning tree T V E

tree tree
= ( , )  of labels. The specific 

process is shown in Algorithm 1.

Directed Acyclic Graph of Labels

The maximum spanning tree T V E
tree tree

= ( , )  of the labels is obtained as above. The maximum 
spanning tree of labels is constructed to maximize the consideration of label relevance and thus 
optimizes the label ordering to improve the classification performance of the classifier chains 
algorithm. In order to derive the label ordering, the maximum spanning tree of labels is converted 
into a DAG. The key issue in this process is determining the direction of each edge of the maximum 
spanning tree.

We first use information entropy to define the uncertainty of the label. The uncertainty of label 
l L
j
Î  is

H l p y p y
j j j

yj

( ) ( ) log ( )
{ , }

= −
∈
∑ 2
0 1

	 (10)

The uncertainty H l
j

( )  of label l
j
 is minimized when all values of label l

j
 are 1 or 0. The 

uncertainty H l
j

( )  of label l
j
 is maximized when half of the values of label l

j
 are 1 and half are 0. 

Conditional on the given label l L
k
Î , the uncertainty of label l

j
 is defined by the conditional entropy 

as follows:

Algorithm 1. Generate maximum spanning tree of labels

Input: Weighted graph of labels G = (V, E, W).

Output: Maximum spanning treeT V E
tree tree

= ( , ) of labels.

1. Let V l
tree

= { }
1

,E
tree
= ∅

2. while V V
tree

¹  do

3 if Any l V
j tree
Î , any l V V

k tree
Î - , and w l l

j k
( , ) reaches the maximum weight

4. do V V l
tree tree k
← ∪ , E E l l

tree tree j k
← ∪ ( , )

5. endwhile
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	 (11)

From the above equation, we obtain the following properties of the label conditional uncertainty 
H l l

j k
( | ) :

1. 	 H l l
j k

( | )  indicates the size of the information carried by l
k

 to l
j
. The larger the value is, the 

more the carried information is.
2. 	 When H l l

j k
( | )  takes the minimum value, that label l

k
 can completely predict the value of label 

l
j
.

3. 	 When H l l
j k

( | )  takes the maximum value, that label l
k

 has no contribution on predicting the 
value of label l

j
.

4. 	 H l l H l l
j k k j

( | ) ( | )¹  indicates that the conditional entropy is asymmetric. There is a difference 
between the uncertainty of l

j
 given l

k
 and the uncertainty of l

k
 given l

j
.

Based on the nature of the analysis H l l
j k

( | ) , it is known that H l l
j k

( | )  represents the level of 
decision difficulty for label l

j
 given label l

k
 and also reflects the degree of independence of l

j
 from 

l
k

. Accordingly, for a set of labels l l L
j k
, Î , we use I l l

k j
( )®  to evaluate the decision difficulty 

of the directed edges < >l l
k j
,  (directed edges from label l

k
 to label l

j
). I l l

k j
( )®  is defined as 

follows:

I l l H l l
k j j k

( ) ( | )→ = 	 (12)

The maximum spanning tree is a connected graph without loops. The maximum spanning tree 
can be transformed into a DAG by determining the direction of each edge. For the edge ( , )l l

j k
 in the 

maximum spanning tree, we calculate I l l
k j

( )®  and I l l
j k

( )® , then compare them and define the 
direction of the edge using the direction with less decision difficulty. The direction of each edge in 
the maximum spanning tree is determined, and finally, the maximum spanning tree is transformed 
into a DAG. The specific process is shown in Algorithm 2.

Topological Sorting
We have obtained a DAG of labels in which two connected labels have an anterior-posterior ordering. To 
obtain the final label ordering, we use the topological ordering, which provides an efficient solution for 
the output vertices of the DAG. Topological ordering is commonly used to solve engineering advancement 
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problems in AOV nets, where the tasks that are ranked first are the ones that need to be completed 
first. In this study, in the DAG of labels, it is necessary to place the labels that have less difficulty (i.e., 
a greater degree of influence) on the target label decision ahead of the target label so that the label 
information can be delivered correctly along the label ordering. The specific algorithm is as follows:

Time Complexity Analysis of Optimal Label Ordering
In order to optimize the label ordering of the classifier chains algorithm, we construct the relevance 
matrix of labels, the maximum spanning tree of labels, and the DAG of labels, respectively. And the 
outputs are the optimized label ordering through topological sorting. Since the Pearson correlation 
coefficient is symmetric, the time complexity of constructing the relevance matrix of labels is 
O q( / )2 2 . The time complexity of constructing the maximum spanning tree of labels using Prim is
O q( )2 . The time complexity of transforming the maximum spanning tree of labels into the DAG of 
labels is O q( ) . The time complexity of using topological sorting to output the optimized label ordering 
is O q e( )+ , where e  is the number of edges. The time complexity of the optimized label ordering 
is O q q e( / )3 2 22 + + .

Control Experimental Algorithm
To investigate whether building a maximum spanning tree of labels can effectively optimize label 
ordering and improve the final classification performance, we designed a classifier chains algorithm 
based on conditional entropy to construct a directed acyclic graph (CEDAGCC) as a control algorithm, 
which directly constructs a DAG of labels based on the mutual decision difficulty between labels.

By calculating the mutual decision difficulty I l l
j k

( )®  and I l l
k j

( )®  between two labels, l
j
 

and l
k

, a directed cyclic graph (DCG) of the labels can be obtained. There are two types of links 
< >l l

j k
,  and < >l l

k j
,  between each pair of labels, l

j
 and l

k
. Their weights are I l l

j k
( )®  and 

I l l
k j

( )® , indicating the difficulty of mutual decision between l
j
 and l

k
. This shows that the DCG 

Algorithm 2. Transformation of maximum spanning tree into DAG

Input: Maximum spanning tree T=(V ,E )
tree tree

.

Output: directed acyclic graph DAG=(V ,E )
DAG DAG

.

1. Let V =V
DAG tree

, E
DAG
= ∅

2. for e l l
j k

( , ) Î E
tree

3. Calculate I l l
k j

( )®  and I l l
j k

( )®

4. if I l l I l l
k j j k

( ) ( )→ ≤ →

5. E E
DAG DAG
← < > e l l

k j
,

6. else

7. E E
DAG DAG
← < > e l l

j k
,

8. endfor
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has a total of q q( )-1  directed edges and q  is the number of labels. To obtain the label ordering, 
the DCG of labels is converted to DAG. According to the above analysis, the smaller I l l

j k
( )®  is 

the greater the effect of l
j
 on l

k
 is. Therefore, the DCG can be transformed into DAG by removing 

the edge in each ring of the DCG that has the greatest decision difficulty (i.e., least influence). 
Algorithm 4 illustrates the process of converting the DCG of labels into DAG.

The linear time complexity of this algorithm to disconnect Cyc  is O Cyc(| |) , where | |Cyc  
denotes the total number of edges in Cyc . After obtaining the DAG of labels, the labels in the DAG 
are outputs as label ordering using Algorithm 3, and finally, this label ordering is trained and predicted 
using the CC algorithm.

EXPERIMENTS

Datasets
To verify the effectiveness of the algorithm proposed in this paper, seven datasets were selected from 
the publicly available multilabel dataset Mulan (Tsoumakas et al., 2011). Mulan is a Java library for 
learning from multilabel data and is widely used to test the performance of multilabel classifiers. 

Algorithm 3. Output label ordering using topological sorting

Input: directed acyclic graph DAG V E
DAG DAG

= ( , ) .

Output: Label orderingL l l l
o o o oq

: , , ,
1 2

 .

1. Let IN = ∅ , q V
DAG

=| |

2. for l V
j DAG
Î

3. Calculate the entry degree in l
j

( )  of label l
j

 in DAG

4. IN IN in l
j

← ∪ ( )

5. endfor

6. for l V
j DAG
Î  do

7. if in l
j

( ) = 0 , < >∈l l E
j k DAG
, , l V

k DAG
Î

8. l l
oj j
¬ , IN IN in l

j
← − ( )

9. in l in l
k k

( ) ( )← −1

10. V V l
DAG DAG j
← −

11. E E l l
DAG DAG j k
← −< >,

12. endfor
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These seven datasets are related to several domains including music, image, bioinformation, and text. 
Basic statistical information of the selected datasets is shown in Table 2.

Cardinality indicates the average number of labels in the sample. The calculation formula is as follows:

LCard D
n

y
i j

j

q

i

n

( )
,

=
==
∑∑1

11

	 (13)

Evaluation Metrics and Comparable Algorithms
Since each sample has multiple labels at the same time in multilabel classification, the common single-
label evaluation metrics cannot fully and accurately evaluate the results of multilabel classification. 
In order to measure the advantages and disadvantages of multilabel classification algorithms we use 
six evaluation metrics that are widely used in multilabel classification.

Algorithm 4. Converting DCG to DAG

Input: DCG=(V, E, W)

Output: DAG V E W
DAG DAG

= ( , , )

1. Let DAG=DCG

2. while DAG has rings

3. Cyc DAGÎ  //Cyc  denotes a ring inside the DAG

4. ′ ← ∈E e e Cyc{ | }  // ¢E  a denotes all weighted edges in the ring

5. ′ ← →∈ ′e I l l
e E start end

argmax ( )  // ¢e  denotes the edge with the highest weighted value

6. Remove edge ¢e  from the DAG

7. endwhile

Table 2. Multilabel dataset statistics

Dataset Instances Features Labels Cardinality Domain

CAL500 502 68 174 26.044 Music

Birds 645 260 19 1.014 Audio

Scene 2407 294 6 1.074 Image

Enron 1702 1001 53 3.378 Text

Yeast 2417 103 14 4.237 Biology

Bibtex 7395 1836 159 2.402 Text

Medical 978 1449 45 1.245 Text
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Jaccard Similarity
n

y y

y y

i i

i ii

n

 =
∧

∨=
∑1

1

ˆ

ˆ
	 (14)

Jaccard Similarity is used to compare the similarity and difference between sample sets and to 
evaluate the average proportion of correctly predicted labels to all labels in each sample, requiring 
that the predicted label sequence and the actual label sequence are identical.

Exact Match
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When all labels of a sample are correctly predicted the sample is correctly predicted. Exact 
Match indicates the percentage of correct sample prediction, and a higher value indicates a better 
classification.
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F1 indicates the composite index of classification effectiveness, which is the summed average of 
precision and recall of samples on the label. A higher F1 indicates better classification effectiveness.
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The macro F1 score represents the weighted average of precision and recall for all labels. Higher 
scores indicate that the algorithm performs well on low-frequency labels.
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The micro F1 focuses on the prediction of each label and is affected by false negatives and false 
positives. It represents the mean value of the weighted sum of precision and recall under all labels. 
Higher scores indicate better performance of the algorithm on high frequency labels.

Ranking Loss
n Y Y
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where Y
i
 is the complementary set of Y

i
 with respect to the set of labels L  and r

i
 denotes the 

ranking function. Ranking loss (Tsoumakas et al., 2011) examines the number of times when the 
irrelevant labels are ranked higher than the relevant ones. The smaller the ranking loss is, the higher 
the probability of correct ranking and the better the classification model will be.
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The six evaluation metrics above measure the classification results from different perspectives. 
The larger the value of the first five evaluation metrics, the better the classification performance of 
the algorithm. The last evaluation metric, ranking loss, has a smaller value, which means that the 
algorithm has better classification performance.

Five related algorithms were selected for comparison with the two experimental algorithms 
proposed in this paper. The details are as follows:

1. 	 BR algorithm: as a classical first-order policy algorithm, it trains a classifier for each label 
independently, without considering the relationship between labels.

2. 	 2BR algorithm: this algorithm is a stacked structure algorithm that uses the predicted labels of 
the first layer as extended features of the features in the second layer to exploit label correlation.

3. 	 CC algorithm: classifier chains algorithm.
4. 	 ECC algorithm: the algorithm improves the classification effect by training multiple classifier 

chains. In this paper, we uniformly set the number of classifier chains trained for each dataset to 5.
5. 	 CEbCC algorithm: the algorithm obtains the label ordering by counting the conditional entropy 

between the labels and then by statistical means.
6. 	 CEDAGCC algorithm: a controlled experimental algorithm is proposed in this paper to illustrate whether 

constructing a maximum spanning tree of labels can effectively utilize label relevance information.
7. 	 maxSTCC algorithm: the proposed algorithm in this paper. The algorithm optimizes label ordering 

by constructing a maximum spanning tree and a directed acyclic graph.

We chose the BR algorithm, 2BR algorithm, and CC algorithm as comparison algorithms because 
both 2BR algorithm and CC algorithm use labels as extra features of features to solve the BR algorithm’s 
lack of ability to utilize label correlation information. The 2BR algorithm uses all labels as extra features 
of features to utilize label correlation, and the CC algorithm only uses labels ranked before the target 
labels as extra features of features to utilize label correlation. The ECC algorithm and CEbCC algorithm, 
along with the CEDAGCC algorithm and maxSTCC algorithm proposed in this paper, both improve 
the classification performance by optimizing the label ordering of the CC algorithm.

Experiment Setup
The experimental dataset is randomly disrupted and divided into five equal parts, four of which are selected 
as the training dataset, and the remaining one as the test data set. Then the experiment is conducted using five-
fold cross-validation, and the mean value of the five experiments is counted as the result of one experiment.

Since the base classifier trained by all algorithms is binary, the algorithm in this study and the 
comparison algorithm uniformly use a linear kernel-based support vector machine (SVM) as the base 
classifier (Sun et al., 2014; Tsoumakas et al., 2010; Vapnik, 1996; Wang et al., 2013). The penalty 
factor C in SVM is a key parameter that affects its performance. When C is large it may lead to 
overfitting, and when C is small it may lead to underfitting. CAL500 and birds datasets were selected 
as experimental subjects to analyze the effect of penalty coefficient C values on the experiments. 
The effect of the C value on the CC algorithm is studied by adjusting the C value to vary in the range 
of [1E-1, 3E-2, 1E-2, 1E-3, 3E-4, 1E-4, 3E-5, 1E-5, 3E-6, 1E-6]. The proposed algorithm and the 
comparison algorithm in this paper both use the CC algorithm as the base. All the algorithms related 
to CC are optimized for label ordering, so studying the impact of C value on the CC algorithm is of 
generality. Figures 1 and 2 show the experimental results.

In Figures 1 and 2, macro F1, which can evaluate the multilabel classification results more 
comprehensively, is selected as the evaluation metric to test the effect of penalty coefficient C in the 
classifier SVM on the CC algorithm. In the bird’s data set in Figure 1, the macro F1 evaluation metric 
achieves the maximum value when the C value is taken as 1E-1, indicating the best classification effect, 
and the minimum value when the C value is taken as 1E-4, indicating the worst classification effect. In 
the CAL500 dataset in Figure 2, the maximum value of the macro F1 evaluation index is obtained when 
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Figure 1. Effect of C-Value in CAL500 data on the CC algorithm

Figure 2. Effect of C-Value in birds data on the CC algorithm
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the C value is 3E-2, which indicates the best classification effect, and the minimum value of macro F1 
evaluation index is obtained when the C value is 1E-6, which indicates the worst classification effect.

Observing Figures 1 and 2, the value of penalty coefficient C directly affects the classification 
results of the CC algorithm, and the C values to achieve the best classification performance are different 
in different datasets. In order to make each algorithm obtain the best classification performance, the 
C values are adjusted in the range of [1E-1, 3E-2, 1E-2, 1E-3, 3E-4, 1E-4, 3E-5, 1E-5, 3E-6, 1E-6] in 
the experiments, and two-fold cross-validation is performed on the training set to select the C values 
that obtain the best validation performance.

To avoid the random effect in the experiment, we conducted 10 repetitions of the experiment 
for each algorithm on each dataset, and took the mean and standard deviation of each metric as the 
final result of the experiment. The experimental hardware and software facilities are Intel Core i7 
4790 for the central processor, 8G of memory, and 64-bit Windows 10 for the operating system. All 
experiments presented in this paper were developed using the python language with the help of the 
toolkit provided by the scikit-learn platform.

RESULTS AND DISCUSSION

Tables 3 to 8 below show the evaluation results and standard deviations of different evaluation metrics 
for the algorithms used in this study and the comparison algorithms on seven publicly available 
datasets. Where ↑ indicates that the larger the evaluation index, the better the classification effect; ↓ 
indicates that the smaller the value of the evaluation index, the better the classification effect. The 
bold in the table indicates the best evaluation result, and the numbers in small brackets indicate the 
ranking of the algorithms with the same evaluation criteria in the same dataset.

As seen from Tables 3 to 8, the algorithm maxSTCC achieved relatively good performance over 
all datasets. Among the evaluation results in the seven datasets, the maxSTCC algorithm ranked first 
and second with 76.2% and 16.7%, respectively.

The algorithm maxSTCC achieves optimal results on six datasets and suboptimal results on the 
Enron dataset in Table 3. Table 3 illustrates that the algorithms are able to maximize the prediction of 
the correct label category for each label. In the CAL500 dataset in Table 4, the exact match evaluation 
metric for all algorithms was 0, indicating that none of the samples were correctly predicted. And 
in the remaining six datasets, the algorithms obtained suboptimal results only on the yeast dataset. 
From Tables 3 and 4, the algorithms are shown to improve the accuracy of label prediction as well 
as the correct prediction rate of samples. In Tables 5 to 7, the maxSTCC algorithm achieves good 
performance on the comprehensive evaluation metrics F1, macro F,1 and micro F1 and achieves 
suboptimal performance on some labels only. In Table 8, the algorithm maxSTCC algorithm also 
achieves better results on the ranking loss evaluation index.

Table 3. Jaccard similarity (↑) of different algorithms on seven datasets

Dataset Comparison Algorithm Proposed Algorithm

BR 2BR CC ECC CEbCC CEDAGCC maxSTCC

Cal500 0.2347±0.017(3) 0.2262±0.013(7) 0.2341±0.022(4) 0.2318±0.015(5) 0.2306±0.012(6) 0.2350±0.011(2) 0.2371±0.009(1)

Birds 0.1736±0.023(7) 0.1754±0.018(6) 0.1755±0.019(5) 0.1757±0.013(2) 0.1756±0.015(3) 0.1755±0.016(4) 0.1770±0.020(1)

Scene 0.6338±0.020(7) 0.6461±0.030(6) 0.6679±0.026(3) 0.6676±0.017(4) 0.6671±0.036(5) 0.6680±0.018(2) 0.6698±0.013(1)

Enron 0.4327±0.039(7) 0.4333±0.021(6) 0.4487±0.021(5) 0.4498±0.020(4) 0.4527±0.028(1) 0.4499±0.022(3) 0.4511±0.023(2)

Yeast 0.4978±0.018(6) 0.4960±0.110(7) 0.5019±0.033(5) 0.5049±0.022(4) 0.5071±0.036(3) 0.5086±0.066(2) 0.5113±0.031(1)

Bibtex 0.3378±0.034(6) 0.3377±0.026(7) 0.3396±0.030(3) 0.3402±0.033(2) 0.3392±0.025(5) 0.3395±0.022(4) 0.3419±0.022(1)

Medical 0.7415±0.059(7) 0.7426±0.019(6) 0.7503±0.012(5) 0.7522±0.010(3) 0.7516±0.019(4) 0.7526±0.019(2) 0.7580±0.017(1)
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From Tables 3 to 8, the 2BR algorithm, CC algorithm, ECC algorithm, CEbCC algorithm, and 
the CEDAGCC algorithm and the maxSTCC algorithm, which consider label correlation, improve 
the classification results compared with the BR algorithm, which does not consider label correlation 
at all. This indicates that using label correlation can improve the classification results of multilabel 
classification algorithms. The 2BR algorithm uses the predicted labels of the first layer as input features 
for the second layer features to exploit label correlations. If the first layer classifier predicts incorrect 
labels, it may introduce incorrect label correlations in the second layer, thus training a second layer 
classifier with poor performance and ultimately leading to poor classification results. It is observed 
from the following tables that the 2BR algorithm is only superior to the BR algorithm as a whole. The 

Table 4. Exact match (↑) of different algorithms on seven datasets

Dataset Comparison Algorithm Proposed Algorithm

BR 2BR CC ECC CEbCC CEDAGCC maxSTCC

CAL500 0.0000±0.000(4) 0.0000±0.000(4) 0.0000±0.000(4) 0.0000±0.000(4) 0.0000±0.000(4) 0.0000±0.000(4) 0.0000±0.000(4)

Birds 0.4884±0.055(7) 0.4915±0.037(5) 0.4913±0.043(6) 0.4933±0.030(4) 0.4935±0.035(2) 0.4935±0.040(3) 0.4944±0.049(1)

Scene 0.5559±0.012(7) 0.5712±0.020(6) 0.6194±0.019(3) 0.6166±0.025(5) 0.6171±0.027(4) 0.6200±0.017(2) 0.6218±0.013(1)

Enron 0.1297±0.026(7) 0.1311±0.019(6) 0.1497±0.018(3) 0.1480±0.021(5) 0.1499±0.034(2) 0.1495±0.023(4) 0.1513±0.028(1)

Yeast 0.1724±0.029(7) 0.1765±0.017(6) 0.1855±0.024(3) 0.1911±0.029(1) 0.1835±0.033(5) 0.1850±0.037(4) 0.1903±0.030(2)

Bibtex 0.1635±0.017(7) 0.1635±0.012(6) 0.1730±0.019(5) 0.1731±0.015(4) 0.1733±0.020(2) 0.1732±0.018(3) 0.1740±0.010(1)

Medical 0.7022±0.039(7) 0.7030±0.027(6) 0.7057±0.043(5) 0.7073±0.050(2) 0.7065±0.044(4) 0.7070±0.040(3) 0.7098±0.041(1)

Table 5. F1 (↑) of different algorithms on seven datasets

Dataset Comparison Algorithm Proposed Algorithm

BR 2BR CC ECC CEbCC CEDAGCC maxSTCC

Cal500 0.3699±0.017(2) 0.3600±0.015(7) 0.3676±0.015(4) 0.3651±0.011(5) 0.3635±0.010(6) 0.3688±0.006(3) 0.3713±0.005(1)

Birds 0.2136±0.028(7) 0.2151±0.020(4) 0.2150±0.023(6) 0.2166±0.024(1) 0.2151±0.025(5) 0.2160±0.018(3) 0.2165±0.020(2)

Scene 0.6602±0.014(7) 0.6714±0.016(6) 0.6870±0.017(5) 0.6874±0.013(4) 0.6876±0.015(3) 0.6880±0.013(2) 0.6900±0.015(1)

Enron 0.5407±0.027(7) 0.5420±0.025(6) 0.5533±0.019(5) 0.5554±0.020(3) 0.5506±0.023(4) 0.5601±0.019(2) 0.5616±0.022(1)

Yeast 0.6040±0.014(6) 0.6020±0.015(7) 0.6049±0.017(5) 0.6074±0.015(2) 0.6070±0.017(3) 0.6061±0.018(4) 0.6092±0.016(1)

Bibtex 0.4059±0.018(6) 0.4058±0.020(7) 0.4060±0.022(5) 0.4064±0.019(4) 0.4068±0.023(2) 0.4065±0.021(3) 0.4133±0.019(1)

Medical 0.7511±0.008(7) 0.7548±0.015(6) 0.7590±0.012(5) 0.7604±0.010(3) 0.7600±0.009(4) 0.7608±0.007(2) 0.7644±0.012(1)

Table 6. Macro F1 (↑) of different algorithms on seven datasets

Dataset Comparison Algorithm Proposed Algorithm

BR 2BR CC ECC CEbCC CEDAGCC maxSTCC

CAL500 0.1115±0.017(2) 0.1065±0.018(5) 0.1100±0.016(4) 0.1044±0.011(7) 0.1060±0.008(6) 0.1111±0.010(3) 0.1124±0.009(1)

Birds 0.3132±0.052(7) 0.3148±0.039(6) 0.3165±0.029(4) 0.3178±0.044(1) 0.3160±0.043(5) 0.3166±0.051(3) 0.3176±0.035(2)

Scene 0.7137±0.017(7) 0.7200±0.018(6) 0.7246±0.017(3) 0.7254±0.015(1) 0.7225±0.016(5) 0.7230±0.014(4) 0.7246±0.016(2)

Enron 0.1899±0.022(7) 0.1913±0.019(5) 0.1915±0.014(3) 0.1917±0.022(2) 0.1914±0.019(4) 0.1910±0.013(6) 0.1920±0.017(1)

Yeast 0.3542±0.006(5) 0.3480±0.008(7) 0.3509±0.007(6) 0.3599±0.004(3) 0.3569±0.005(4) 0.3602±0.009(2) 0.3609±0.008(1)

Bibtex 0.3285±0.033(7) 0.3285±0.024(6) 0.3286±0.025(5) 0.3287±0.020(4) 0.3293±0.019(2) 0.3288±0.020(3) 0.3300±0.018(1)

Medical 0.2714±0.005(7) 0.2722±0.008(6) 0.2735±0.004(5) 0.2740±0.006(3) 0.2738±0.007(4) 0.2741±0.009(2) 0.2753±0.005(1)
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CC algorithm, ECC algorithm, and CEbCC algorithm use real labels as input features for the training 
phase, avoiding the drawbacks of the 2BR algorithm, and thus the classification results are improved.

Average Rank
We calculated the average ranking of these algorithms and comparison algorithms in order to show 
the experimental effects visually. Figure 3 shows the average ranking of these seven algorithms on 
the six metrics. Figure 4 shows the average ranking of these seven algorithms on the seven datasets. 
Overall, the proposed algorithm maxSTCC achieves the best ranking, which verifies the effectiveness 
of our proposed method. The control algorithm CEDAGCC proposed in this paper achieves the second 
ranking on accuracy, exact match, F1, micro F1 and ranking loss, and the third ranking on macro F1 
only. This shows that exploring dependencies between labels by exploiting the decision difficulty 
between labels and building DAG of labels can utilize relevance. And the superior achievement of 
the maxSTCC algorithm affirms the contribution of constructing a maximum spanning tree of labels 
in utilizing label relevance.

Friedman Test
The Friedman test (Friedman, 1940) is used to analyze whether there is a significant difference 
between the individual algorithms. The Friedman statistic value F

F
 is calculated as follows:
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Table 7. Micro F1 (↑) of different algorithms on seven datasets

Dataset Comparison Algorithm Proposed Algorithm

BR 2BR CC ECC CEbCC CEDAGCC maxSTCC

CAL500 0.3735±0.008(3) 0.3633±0.012(7) 0.3723±0.014(5) 0.3725±0.013(4) 0.3714±0.015(6) 0.3730±0.009(2) 0.3754±0.011(1)

Birds 0.4300±0.041(7) 0.4395±0.026(3) 0.4380±0.036(6) 0.4397±0.035(2) 0.4394±0.028(4) 0.4390±0.022(5) 0.4401±0.019(1)

Scene 0.7088±0.017(7) 0.7154±0.018(6) 0.7157±0.018(5) 0.7193±0.016(2) 0.7168±0.013(4) 0.7188±0.015(3) 0.7194±0.022(1)

Enron 0.5588±0.022(7) 0.5588±0.019(6) 0.5667±0.017(1) 0.5660±0.014(3) 0.5663±0.017(2) 0.5654±0.024(5) 0.5660±0.022(4)

Yeast 0.6238±0.006(7) 0.6260±0.008(6) 0.6266±0.007(5) 0.6295±0.003(3) 0.6275±0.005(4) 0.6300±0.005(2) 0.6318±0.008(1)

Bibtex 0.4393±0.013(6) 0.4391±0.025(7) 0.4402±0.027(4) 0.4424±0.019(1) 0.4400±0.021(5) 0.4411±0.021(3) 0.4420±0.020(2)

Medical 0.7786±0.005(7) 0.7790±0.008(6) 0.7799±0.007(5) 0.7812±0.009(3) 0.7809±0.008(4) 0.7830±0.003(2) 0.7839±0.004(1)

Table 8. ranking loss(↓) of different algorithms on seven datasets

Dataset Comparison Algorithm Proposed Algorithm

BR 2BR CC ECC CEbCC CEDAGCC maxSTCC

Cal500 0.7189±0.038(3) 0.7264±0.027(7) 0.7174±0.034(2) 0.7239±0.021(6) 0.7234±0.019(5) 0.7190±0.022(4) 0.7110±0.015(1)

Birds 0.3153±0.019(2) 0.3146±0.011(1) 0.3160±0.016(7) 0.3156±0.018(5) 0.3157±0.017(6) 0.3155±0.015(3) 0.3156±0.015(4)

Scene 0.3208±0.010(7) 0.3207±0.013(6) 0.3102±0.015(2) 0.3104±0.019(3) 0.3108±0.017(4) 0.3110±0.016(5) 0.3093±0.016(1)

Enron 0.4912±0.015(7) 0.4909±0.017(6) 0.4774±0.019(3) 0.4778±0.011(4) 0.4790±0.019(5) 0.4750±0.012(2) 0.4712±0.022(1)

Yeast 0.4578±0.018(6) 0.4603±0.017(7) 0.4510±0.016(5) 0.4484±0.014(3) 0.4506±0.017(4) 0.4480±0.015(2) 0.4474±0.010(1)

Bibtex 0.5997±0.020(7) 0.5976±0.022(6) 0.5949±0.025(1) 0.5956±0.022(3) 0.5960±0.021(4) 0.5965±0.019(5) 0.5955±0.015(2)

Medical 0.2221±0.009(7) 0.2210±0.010(6) 0.2200±0.014(5) 0.2193±0.009(3) 0.2195±0.006(4) 0.2177±0.012(2) 0.2150±0.011(1)
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Figure 3. Average ranking of seven algorithms on six metrics

Figure 4. Average ranking of seven algorithms on seven datasets
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/  denotes the average rank of the jth algorithm among the comparison 
algorithms. In this paper, N = 7  and k = 7  denotes the number of datasets and the number of all 
algorithms, respectively. By consulting the table of the Friedman test critical values, the critical value 
of F k k N F− −( )× −( )( ) = ( )1 1 1 6 36, ,  for rejecting the null hypothesis at significant level 

a = 0 05.  is 2.364. When F
F

 is larger than the critical value of 2.364, it indicates a significant 
difference in the classification performance of the seven algorithms. The Friedman test results are 
shown in Table 9.

Stability Analysis of the maxSTCC Algorithm
In terms of algorithm stability, the classifier chains and its improvement algorithms are prone to 
unstable performance when the label dimension of the dataset is too high. The maxSTCC algorithm 
differs from the CC algorithm in randomly selecting the label ordering, but it explores the dependency 
information among labels by constructing the maximum spanning tree and DAG of labels and then 
obtains a more stable label ordering. Thus, it has a more stable classification performance.

To effectively illustrate the stability of the maxSTCC algorithm, two datasets, CAL500 and bibtex, 
which have 174 and 159 labels, respectively, were selected for observation. As shown in Tables 3 
to 8, the stability (standard deviation) of CEDAGCC algorithm and maxSTCC algorithm proposed 
in this paper achieves better results compared with the CC algorithm, ECC algorithm, and CEbCC 
algorithm. In particular, the maxSTCC algorithm maximizes the utilization of correlation information 
among labels by constructing the maximum spanning tree of labels, which can further improve the 
stability of label ordering compared with the CEDAGCC algorithm. Therefore, the performance of 
maxSTCC algorithm is more stable.

CONCLUSION AND FUTURE WORK

In this paper, we propose a new multilabel classification algorithm (maxSTCC), which improves the 
classification performance of the CC algorithm by building a maximum spanning tree of labels and 
transforming it into a directed acyclic graph to obtain a better label ordering. The maxSTCC algorithm 
has the following main contributions: 1) using the Pearson correlation coefficient to measure the degree 
of correlation between labels and taking the absolute value to consider the positive correlation and 
negative correlation, 2) constructing a maximum spanning tree of labels to maximize the utilization 
of the correlation information between labels, and 3) using conditional entropy to define the mutual 
decision difficulty between two related labels and using the direction with less decision difficulty as 
the dependency direction of these two labels to solve the ranking problem between two related labels.

Table 9. Friedman test for seven algorithms

Metrics
F
F

Critical Value(a = 0 05. )

Jaccard Similarity 19.40

2.364

Exact Match 8.06

F1 15.0

Macro F1 9.54

micro F1 9.65

Ranking Loss 4.32
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The experimental results show that the maxSTCC algorithm effectively optimizes the label 
ordering and improves the classification effect of the CC algorithm with more stable performance 
and stronger competitiveness than other related algorithms. To illustrate the effect of constructing 
the maximum spanning tree of labels on the maxSTCC algorithm, a control experimental algorithm 
CEDAGCC was designed in this study, which directly calculates the decision difficulty between labels 
to construct the directed acyclic graph of labels. The experimental results of CEDAGCC algorithm 
and maxSTCC algorithm affirm that the maximum spanning tree of labels effectively utilizes the 
correlation information between labels.

Future research on this topic may include the following: 1) the directed acyclic graph of labels has 
multiple topological orderings, and it would be interesting to study the effect of different topological 
orderings on the classification performance; 2) this paper describes that the base classifier of the 
maxSTCC algorithm is SVM, and it would be interesting to discuss the effect of different base 
classifiers on the maxSTCC algorithm; 3) we used mutual decision difficulty between labels to 
solve the ranking problem between two related labels, and applying this method to other multilabel 
classification algorithms should be the focus of future work.
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