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ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a long-term, irreversible, and progressive respiratory 
disease that often leads to lung function decline. Pulmonary function tests (PFTs) provide valuable 
information for diagnosing COPD; however, they are underutilised in clinical practice, with only a 
subset of test values being used for decision making. The final clinical diagnosis requires combining 
PFT results with patient information, symptoms, and other tests, such as imaging and blood analysis. 
This study aims to comprehensively utilise all the testing information in PFTs to assist in the diagnosis 
of COPD. Various machine learning models, such as logistic regression, support vector machine 
(SVM), k-nearest neighbour (KNN), random forest, decision tree, and XGBoost, have been employed 
to establish COPD diagnosis assistance models. The XGBoost model, trained with features extracted 
by the group LASSO algorithm, achieved the best performance, with an area under the receiver 
operating characteristic curve (ROC) of 0.90, 88.6% accuracy, and 98.5% sensitivity. This model can 
assist doctors in the clinical diagnosis and early prediction of COPD.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a respiratory disease characterised by airflow 
limitation (Vestbo et al., 2013). It poses a serious threat to human health with a high incidence. In 
fact, the disease is one of the most significant public health problems affecting global economic and 
social development (Alkhathlan et al., 2020; Corlateanu et al., 2020; Halpin et al., 2021). COPD is 
the third leading cause of death worldwide and the fifth disease causing a substantial social burden, 
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with approximately three million deaths each year (Lozano et al., 2012) and more than 300 million 
people who suffer it (Adeloye et al., 2015). With an aging population, the number of people affected 
is expected to increase (Lopez-Campos et al., 2016).

Pulmonary function tests (PFTs) are essential tools for diagnosing COPD and assessing the 
function of the respiratory system (Crapo, 1994). However, interpreting complex, multidimensional, 
nonlinear, and heterogeneous data in PFT reports can be challenging. Experts rely on international 
guidelines to identify disease patterns (obstructive, restrictive, mixed, and normal) and grade their 
severity (Pellegrino et al., 2005; Vogelmeier et al., 2017). The final clinical diagnosis requires 
combining PFT results with patient information, symptoms, and other tests, such as imaging, blood 
analysis, and biopsy (Galie et al., 2016; Martinez et al., 2017).

Although PFT reports contain rich clinical information, reliance on human interpretation has 
limitations. Owing to international diagnostic rules, physicians can only make preliminary judgments 
based on some of the test values. Furthermore, clinicians may lack experience, leading to misdiagnosis 
and delayed COPD treatment (Tinkelman et al., 2006).

To improve the accuracy of COPD diagnosis, it is essential to mine hidden clinical information 
from PFT reports. Utilising the entire report can reduce unnecessary examinations and wasted medical 
resources. However, few studies have utilised PFT reports to aid in the diagnosis of COPD, likely because 
of difficulties in acquiring the necessary data. The data contained in PFT reports are physically separated 
from other hospital data, creating a data island. These data are stored in standalone spirometers; they 
cannot be integrated and analysed with other data like electronic medical records (EMRs).

Building on the research findings of the authors’ laboratory, this study represents the first effort 
to extract 230,000 PFT reports from stand-alone spirometers at Xiangya Hospital of Central South 
University, thereby breaking down the data barriers that hindered previous studies. Given the focus 
of this study on the auxiliary diagnosis of COPD, the authors examined the bronchodilation reports 
in the PFT reports, totalling 16,012 reports.

The PFT is globally standardised, making it an ideal candidate for developing artificial intelligence 
(AI) algorithms for assisted diagnosis (Jordan & Mitchelle, 2015; Kononenko, 2001). AI can identify 
subtle and decisive features that are difficult for humans to detect. Then, the technology can incorporate 
the features into powerful differential diagnostic algorithms.

This study developed a complete solution for the auxiliary diagnosis of COPD using PDF-format PFT 
reports. The proposed algorithm comprises six parts: (1) pre-processing PDF report data; (2) matching 
report ID; (3) handling missing data; (4) data selection; (5) feature selection; and (6) model training. 
Specifically, the proposed algorithm initially uses text detection and recognition algorithms (Liao et 
al., 2020; Shi et al., 2017) to process the PDF format and obtain structured data. It then matches the 
missing patient identifications (IDs) in the PFT reports and handles the missing values in the examination 
indicators. Subsequently, data inclusion and exclusion are performed to obtain a clean dataset.

The authors used two feature selection algorithms, LASSO (Tibshirani, 1996) and group LASSO 
(Yuan et al., 2006), to perform data selection and dimensionality reduction on the dataset. The features 
obtained from the two dimensionality reduction algorithms were then separately used for six machine 
learning models: (1) logistic regression; (2) support vector machine (SVM); (3) k-nearest neighbour 
(KNN); (4) random forest; (5) decision tree; and (6) Xgboost (Breiman, 2001; Chang & Lin, 2011; 
Chen & Guestrin, 2016; Deng et al., 2016; Lavalley, 2008). These models located the best performing 
model as the authors’ final assistive diagnosis model for COPD.

This study also used the Shapley additive explanations (SHAP) (Lundberg & Lee, 2017; Lundberg 
et al., 2018) algorithm to visualise the importance of each feature when the model makes decisions. 
The feature importance explanation reveals the machine learning model’s preferences when making 
decisions, thereby providing new recommendations for clinical decision making. The results validate 
the important features of COPD diagnosis in clinical medicine and provide insights into COPD 
diagnosis from a big data perspective. The final accuracy rate of the model was 88.6%, with a 
specificity of 68.9% and a sensitivity of 98.5%, achieving a state-of-the-art effect in COPD diagnosis.
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For a clearer presentation of the research, the authors first provide an overview of the study’s 
structure. Section 2 discusses related studies on the auxiliary diagnosis of COPD. Section 3 introduces 
the core method proposed for diagnosing auxiliary COPD. Section 4 presents the results of the 
proposed COPD auxiliary diagnostic model. Finally, Section 5 summarises the contributions of this 
study and discusses the existing limitations.

RELATED WORK

Currently, research on the auxiliary diagnosis of COPD focuses on modelling and analysis of radiographic, 
bioinformatics, and respiratory function data. Radiographic data-based COPD auxiliary diagnosis is 
based primarily on computed tomography (CT) and x-rays as research subjects (Bhosale & Patnaik, 
2023; Hasenstab et al., 2021; Ho et al., 2021; Tang et al., 2020; Willer et al., 2021; Xu et al., 2020). 
Machine learning algorithms are used to quantitatively analyse lung structures and extract features to 
assess COPD severity. Tang et al. (2020) collected multiple low-dose CT scan images from smoking and 
non-smoking patients. They enhanced the images and extracted several regions of interest, which were 
combined into a three-channel data structure as input for the constructed deep residual network model 
to automate COPD diagnosis. Xu et al. (2020) built a network model based on deep convolutional neural 
network transfer learning and multi-instance learning concepts, using axial divisions of multiple CT 
images as input for COPD risk prediction. Willer et al. (2021) developed a novel dark-field x-ray system 
to quantitatively analyse the accuracy of emphysema detection. Bhosale and Patnaik (2023) employed 
ensemble learning to integrate eight advanced deep learning models and constructed a more powerful 
ensemble model for the quantitative analysis and diagnosis of x-ray images. However, radiography-based 
techniques have limitations, as early-stage COPD does not exhibit significant organic changes, making 
radiographic auxiliary diagnostic methods unsuitable for early COPD diagnosis.

Bioinformatics-based COPD auxiliary diagnosis involves constructing models using gene 
expression and patient biological characteristic data (Leidy & Malley, 2016; Mostafaei et al., 2018; 
Spathis & Vlamos, 2019). Mostafei et al. (2018) explored novel genes related to COPD in human 
airway epithelial cells using classical machine learning algorithms from a genetic perspective. Leidy 
and Malley (2016) employed random forest algorithms to analyse three large datasets, constructing a 
COPD auxiliary diagnosis model with features like age, smoking status/history, symptoms, activity 
limitations, and acute bronchitis exacerbation. Spathis and Vlamos (2019) used clinical features (i.e., 
age, gender, sputum production, and smoking) as input data. They built a COPD auxiliary diagnosis 
model using basic machine learning algorithms and ensemble machine learning algorithms. Leidy and 
Malley (2016) and Spathis and Vlamos (2019) used common clinical features without incorporating 
standardised features related to respiratory function (e.g., PFT reports), leading to relatively poor 
interpretability of the model’s predictive results and weaker persuasiveness for doctors.

Respiratory function data-based COPD auxiliary diagnosis primarily uses the PFT report data. 
However, because spirometers are physically isolated from other hospital data, there is minimal 
research directly analysing PFT reports using machine learning methods. In 2019, Topalovic et al. 
(2019) proposed a machine learning model for the auxiliary diagnosis of lung diseases based on PFTs. 
However, the study used only 50 pulmonary function test reports. In addition, the model structure 
was not disclosed. The accuracy of COPD diagnosis was 72.4%. Owing to the limited number of 
research samples, undisclosed model, and irreproducibility, the study’s influence was slightly limited.

This study is the first to use massive PFT reports for the auxiliary diagnosis of COPD, both at 
home and abroad. Compared to Topalovic et al. (2019), the accuracy rate in this study improved 
by 16.2%, reaching 88.6%. This study utilised advanced public machine learning models, such as 
logistic regression, SVM, decision tree, KNN, random forest, and Xgboost (Breiman, 2001; Chang & 
Lin, 2011; Chen & Guestrin, 2016; Deng et al., 2016; Lavalley et al., 2008). In addition, the authors 
conducted an interpretability analysis of the model output to provide effective auxiliary decision 
making for doctors. The main contributions are as follows:
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1. 	 The authors developed a comprehensive solution to process the PDF reports of PFTs and obtain 
structured data, providing a solution for processing similar medical data.

2. 	 The feature selection algorithm (Tibshirani, 1996; Yuan & Lin, 2006) was applied to reduce the 
data dimensions of the PFT report and obtain critical information in high-dimensional data. This 
can improve the accuracy of the model.

3. 	 Using the algorithms of logistic regression, SVM, decision tree, KNN, random forest, and Xgboost 
(Breiman, 2001; Chang & Lin, 2011; Chen & Guestrin, 2016; Deng et al., 2016; Lavalley, 
2008) were used for the first time to construct an auxiliary diagnosis model of COPD based on 
pulmonary function reports. The model’s accuracy of 88.6% is an advancement in the research 
on the diagnosis of COPD using machine learning algorithms.

4. 	 The SHAP (Lundberg & Lee, 2017; Lundberg et al., 2018) algorithm was used to visualise the 
model output and verify the critical indicators for the diagnosis of COPD in the past. Furthermore, 
this study provided a new key indicator for diagnosing COPD.

METHOD

Figure 1 provides an overview of the authors’ proposed approach for building an auxiliary diagnosis 
model for COPD. It comprises six key steps: (1) pre-processing the PDF report data; (2) matching the 
report ID; (3) handling missing data; (4) data selection; (5) feature selection; and (6) model training. 
This section elaborates on each aspect in detail.

Pre-Processing PDF Report Data
PFT reports, which were obtained from the hospital intranet data centre, comprised real hospital records. 
Specifically, the authors collected 16,012 reports of patients who underwent bronchodilation examinations 
at Xiangya Hospital of Central South University between 2011 and 2021 to construct a dataset suitable for 
the study. PFT reports are typically stored in PDF format. Thus, the numerical data contained within them 
cannot be easily extracted and processed, presenting significant challenges for data analysis. To address 
this, the authors proposed a method for extracting PFT test PDF report data based on text detection and 
recognition techniques. Their work aimed at extracting and saving the data in a usable JSON format for 
subsequent data analysis and research. The processing flow is illustrated in Figure 2.

Converting PDF to Images
This study utilized the pdf2image Python library to convert a PDF test report into an image format 
that can be easily used for subsequent text detection and recognition.

Text Detection and Text Recognition
The authors first performed text detection and recognition on images converted from the PDF format of PFT 
reports. The differentiable binarization (DB) algorithm was used for text detection (Liao et al., 2020); the 
convolutional recurrent neural network (CRNN) algorithm was used for text recognition (Shi et al., 2017). 
Specifically, this study used the open-source implementation of PaddleOCR (Li et al., 2022) and the pretrained 
DB algorithm model and CRNN model built into PaddleOCR for text detection and recognition, respectively. 
The application of these algorithms and models provided a solid foundation for the research and achieved 
satisfactory experimental results. Specifically, the study’s experiments performed well, as shown in Figure 3.

Figure 1. Overview of the algorithm
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However, sometimes the text detection and recognition algorithm encountered issues, as shown 
in Figure 4, where the problem is highlighted in a green box. It is evident that there are two numbers 
within one text-detection box and there are spaces before and after the decimal point of the number. 
The key issue is correctly recognising the numbers and associating the extracted indicator values 
with the corresponding feature types. Handling missing values is also a critical issue; text recognition 
boxes are not continuous, making it difficult to match the columns during alignment. Therefore, this 
study proposes a text alignment algorithm for data processing.

Text Alignment
The textbox may contain more than one number. In addition, there may be spaces before and after the decimal 
point of multiple numbers. To address this issue, this study uses a non-capturing group technique in regular 

Figure 2. PDF report processing workflow

Figure 3. PDF report text detection and recognition results

Figure 4. Example of errors in text detection and recognition
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expressions for matching. The regular expression is pattern r' d s* s* d '= − + +( )?\ ? : \ . \ \ ? .Here, 
` ?`-  indicates that the optional negative sign `-̀  can be matched, allowing for matching of positive and 
negative numbers. ̀ `− +d  matches one or more digits, thereby matching the integer part. ̀ ? : \ \ . \ \ `s s d* * +  
is a non-capturing group, where ? :…( )  indicates a non-capturing group. `\ `s*  matches zero or more 
whitespace characters and `\.` matches the decimal point. ' '\d + matches one or more digits, thereby 
matching the decimal part. The entire expression uses `?` to indicate that the decimal part is optional, 
allowing for matching of both integers and floating-point numbers. There is no need to save the decimal part 
separately. Therefore, using a non-capturing group can achieve the desired effect of matching the decimal 
part while saving the entire number as a group in the match result. 

The regular expression-matching algorithm is used in line 19 of Algorithm 1 to extract all numbers 
in the text box and save them in a list referred to as matches_str. To better understand Algorithm 1, it 
is necessary to clearly show the data format, as shown in Figure 5. The upper part of Figure 5 shows a 
cropped text detection box; the lower part displays the corresponding data format. In this format, [523.0, 
94.0] represents the coordinates of the top-left corner of the text detection box, [842.0, 94.0] the top-right 
corner, [842.0, 134.0] the bottom-right corner, and [523.0, 134.0] the bottom-left corner. In the tuple (‘中
南大学湘雅医院’, 0.9971780776977539), ‘中南大学湘雅医院’ denotes the extracted text information 
from the text detection box. 0.9971780776977539 indicates the confidence level of the model’s recognition.

To correctly locate a text selection box in its corresponding row and column, the text alignment 
algorithm first processes a list of text recognition boxes into rows and columns. Specifically, this study uses 
the right upper corner coordinates of each text recognition box as a reference point. When the difference 
in the y-coordinates between two boxes is greater than eight, it is considered that they belong to different 
rows, as shown in lines 3 and 7 of Algorithm 1. Each row of the text recognition boxes is stored in a 

Figure 5. Data format for text detection and recognition results
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separate list. The entire report is stored using multiple lists. The entire process of handling text-detection 
boxes by dividing them into rows is shown in lines 1-10 of Algorithm 1. After completing row alignment, 
column alignment is required. Column alignment is a critical operation that is essential for data accuracy.

For the bronchial dilation test reports, there were six test values: (1) Pred; (2) A1; (3) A1/Pd; (4) 
P1; (5) A2/Pd; and (6) chg%1 (see Figure 3). At present, the focus is on aligning the feature columns. 
It is crucial to accurately align the data in the text boxes with the data types for the authors’ subsequent 
research. To simplify the algorithm, this study shows the core operation of aligning the clinical features 
into columns. Specifically, line 13 of Algorithm 1 describes the process of feature alignment. If the 
second text detection box in a row ends with ‘]’, it indicates that the row contains clinical features.

Regarding the column alignment, the authors’ approach determines the position of the current 
text recognition box as the nth element. This determines the corresponding test value. However, it was 
found that the sizes of various text boxes differ. Thus, relying solely on their approximate positions 
to determine which column they correspond to is difficult because it is a challenge to ascertain the 
specific coordinate range. Furthermore, the sizes of text recognition boxes vary, leading to changes 
in their approximate position coordinates.

Therefore, this study adopts a different approach, looking for fixed points in the text recognition 
box for use as references. Specifically, as shown by the first green vertical line in Figure 3, the right 
endpoint of this text box was fixed. Thus, this article uses the first green line as a first reference point. 
The distance of each text recognition box relative to the first reference point can then be calculated 
to determine the features to which it belongs.

Which point in the text box should be selected for the calculation? As indicated by the second 
green vertical line in Figure 3, the horizontal coordinates of the right endpoints are the same for the 
text recognition boxes in the same column. This study, therefore, used the right endpoint of the text 
recognition box and right endpoint of the first vertical line as benchmarks. The distance between 
them was used as a standard to measure the column to which the text belonged. Specifically, the 
number of text boxes relative to the first reference box is calculated as num x= −( )18 40/ , where 
x is the horizontal coordinate of the upper-right endpoint of the text box and 40 represents the difference 
in the horizontal coordinate between the right endpoint of the previous text box and current text box’s 
right endpoint. The 18 refers to the distance between the right endpoint of the first reference box and 
its adjacent text box’s right endpoint (this is 18 times greater than the normal 40). Therefore, for 
convenience of calculation, x was first subtracted by 18. 

The variable num represents the index of the last feature that corresponds to the number in the 
current text box. A text box may contain multiple numbers; therefore, it should loop backwards from 
the obtained index num and assign each number in the text box to the corresponding feature type. 
This process corresponds to lines 11-24 of Algorithm 1:
Algorithm 1: Text Alignment Algorithm based on Non-capturing 
Grouping Regular Technique 
Input: Text detection and recognition results set S
Output: Json Result 
1. line_list = [], total_list = [] // Initialize the list of rows 
and the whole report data list 
2. for data  in S :
3.  if len(line_list)>1 and abs(line_list[-1][0][0][1] - data[0]
[0][1]) > 8: 
4.        total_list.append(line_list) 
5.        line_list=[] 
6.        line_list.append(data) 
7.  elif len(line_list) == 0 or abs(line_list[-1][0][0][1] - 
data[0][0][1]) <= 8:   
8.        line_list.append(data) 
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9. if line_list is not None: 
10.  total_list.append(line_list)   
11. result = {‘data’: {}} // define result dictionary 
12. for line_list in total_list: // perform column alignment 
13.  if len(line_list) >= 2 and line_list[1].endsWith(“]”): // 
locate the rows where the feature values occur  
14.       feature_name = “_”.join(line_list[0].split()) // defines 
the name of the feature to handle 
15.       start_right = line_list[1][0][1][0] 
16.       if len(line_list) == 2: 
17.             continue 
18.       for line in line_list[2:]: 
19.             matches_str = match(line[1][0].strip()) // regular 
extraction 
20.             dis = line[0][1][0] - start_right 
21.             num = round((dis-18)/40) 
22.             start_index = num - len(matches_str) 
23.             for index, match_str in enumerate(matches_str): 
24.                    result[‘data’][feature_name][feature_
type[start_index + index]] = match_str

Structured Text Output
After processing using Algorithm 1, the PFT report in the PDF format is transformed into a JSON 
format that is easy to handle (see Figure 6).

Matching Report’s Patient ID Module
The patient ID serves as a unique identifier in the EMR system, allowing the patient’s diagnostic data 
to be linked to their ID. However, some PFT reports lack patient ID. Thus, it is impossible to obtain 
a corresponding diagnostic label from the EMR. To solve this problem, this study extracts payment 
information from the hospital charging system for each PFT report, including the report name, payment 

Figure 6. Structured reporting data
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time, patient name, birth date, and sex. This information is then matched to the corresponding data 
in the PFT report to obtain the patient ID for each report.

Handling Missing Data
Imputing missing values is a crucial step in data pre-processing. To better understand this 
process, it is necessary to provide an overview of the bronchodilation test. The test measures the 
changes in the degree of bronchiectasis before and after using a specific dose of bronchodilator 
drugs. It then determines whether there is persistent spasm and irreversible airway obstruction. 
Each report includes 17 test values corresponding to FVC, FEV1, ..., and BF MVV in Figure 3. 
Each test value has six types of values, including the predicted value, pre-drug test value before 
bronchodilator inhalation, ratio of the pre-drug test value to the predicted value, post-drug test 
value after bronchodilator inhalation, ratio of the post-drug test value to the predicted value, and 
rate of change in the post-drug test value to the pre-drug test value (corresponding to Pred, A1, 
A1/Pd, P1, A2/Pd, and chg%1 in Figure 3).

When filling in missing values, in this study, the authors first filled in the missing values of the 
FEV1%FVC Pred indicator using the formula. This represents the ratio of forced expiratory volume 
in one second to forced vital capacity, which is commonly referred to as the one-second rate. This 
indicator is crucial for diagnosing asthma and COPD severity. Its predicted value is related to height, 
calculated using FEV FVC Pred height1 90 6043 0 0414% *= −. . . Then, the authors calculated the 
missing values for the FEV1%FVC A1/Pd and FEV1%FVC A2/Pd indicators based on their predicted 
values via their pre-drug values, post-drug values, and predicted values, respectively. See equations 
(1) and (2). 

FEV FVC A Pd FEV FVC A FEV FVC Pred1 1 1 1 1% / % / %=( ) ( ) 	 (1)

FEV FVC A Pd FEV FVC P FEV FVC Pred1 2 1 1 1% / % / %=( ) ( ) 	 (2)

Next, the authors removed indicator values whose missing rate was greater than one-third. They 
used the missForest algorithm to fill in the remaining indicator values (Stekhoven & Buhlmann, 
2012). After completing the data processing, 78 dimensional indicators remained.

Data Selection
Data filtering is crucial in scientific research because it determines the performance of a model. In 
this study, 16,012 bronchodilation reports were collected from a dataset. The data filtering process 
is illustrated in Figure 7.

In the screening process for reports labelled as COPD, the authors found that some diagnoses in 
hospital outpatient clinics were inaccurate, such as COPD pending investigation and COPD waiting 
to be discharged. After consulting experts from the Xiangya Hospital, Central South University’s 
Department of Respiratory Medicine, a decision was made to exclude data on pending diagnosis, 
pending investigation, and suspected COPD from the outpatient diagnosis. All inpatient diagnostic 
data were retained. For each report, if there was a diagnosis of COPD in the EMR two weeks before 
or after the report’s check time, it was labelled 0. This indicated that the diagnosis label was COPD. 
A total of 803 outpatient reports were excluded; 3,453 reports labelled as COPD were included.

Figure 7. Inclusion and exclusion of PFT reports
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In the screening process for reports labelled normal, experts from the department were consulted. 
They noted that there are cases in which the diagnosis is not entirely written in the outpatient diagnosis. 
Thus, even if COPD is not mentioned in the outpatient diagnosis, it does not rule out that the patient 
has COPD. If there was no diagnosis of COPD on the EMR two weeks before or after the report’s 
check time, the report was labelled as normal (defined as 1). To ensure the accuracy of the report 
label, outpatient reports were excluded when the label was normal. Only inpatient reports were 
included. A total of 10,038 reports were excluded; 1,718 reports labelled as normal were included.

The final pulmonary function report dataset included 5,171 reports. This included 3,453 COPD 
reports and 1,718 normal reports.

Feature Selection
Previous studies have found that only a small portion of these features are related to the data labels 
that need to be predicted (Li et al., 2022). Most features are simply noise variables that can negatively 
affect model training and response speed. To reduce the data dimensionality, two types of sparse 
feature selection models were employed. These include the individual sparse feature selection and 
group sparse feature selection. The individual model independently evaluates the importance of each 
feature. It does not consider the combined effect of different features. The group model considers the 
joint effect of different feature combinations.

To ensure the comprehensiveness of the current research, representative algorithms from both 
methods were selected for feature screening. Specifically, the LASSO algorithm (Tibshirani, 1996) 
was used for individual sparse feature selection. The group LASSO algorithm (Yuan & Lin, 2006) 
was employed for group-sparse feature selection.

LASSO is a linear regression method that uses L1 regularisation (Tibshirani, 1996). Using L1 
regularisation makes some of the learned feature weights zero to achieve sparsity and feature selection. 
The group LASSO algorithm, an extension of the LASSO algorithm, applies feature grouping prior 
to feature selection. This approach considers the interaction effects between features. In the actual 
implementation, open-source implementations of the two algorithms were adopted using the sklearn 
and group-LASSO packages in Python.

Model Training
This study utilised features extracted by the LASSO and group LASSO algorithms as inputs to train 
six machine-learning models (Breiman, 2001; Chang & Lin, 2011; Chen & Guestrin, 2016; Deng et 
al., 2016; Lavalley, 2008). The performance of each model was evaluated. Then, the best-performing 
model was selected as the final model to assist in the diagnosis of COPD. The training and test sets 
were split at a ratio of 7:3. The performance of the model was tested using the test set.

The following metrics were used to test the validity of the model: accuracy; recall; precision; 
sensitivity; specificity; FPR; NPV; F1score; and AUC. COPD was defined as a positive class and 
normal as a negative class.

•	 Accuracy: This represents the accuracy of model classification.
•	 Recall: This represents the recall ability of positive samples and reflects the proportion of positive 

samples correctly judged as positive. Its calculation formula is the same as that for sensitivity.
•	 Precision: This represents the proportion of positive samples classified correctly among the 

classified positive samples.
•	 Sensitivity: This represents the predictive ability of a positive class. The higher the sensitivity, 

the lower the probability of a missed diagnosis.
•	 Specificity: This represents the predictive power of a negative class. The higher the specificity, 

the higher the probability of diagnosis and the lower the probability of misdiagnosis.
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•	 FPR: This represents the false positive rate, which indicates the ratio of negative samples 
predicted as positive to the number of negative examples. The lower the false positive rate, the 
better the effect of the model.

•	 NPV: This represents the precision of negative samples (the proportion of negative samples 
predicted to be negative).

•	 F1_Score: This score is an indicator used to measure the accuracy of a binary classification model 
in statistics. It considers the precision and recall of the model. In addition, it can be regarded as 
a weighted average of precision and recall.

•	 AUC: This is the area under the receiver operating characteristic curve (ROC), a performance 
indicator used to measure the model’s performance.

The authors define TP as true positive (the number of positive samples predicted to positive class), 
FP as false positive (the number of negative samples predicted to positive class), TN as true negative 
(the number of positive samples predicted to negative class), and FN as false negative (the number of 
negative samples predicted to negative class). The above evaluation metrics are expressed as follows:

accuracy
TP TN

TP TN FP FN
=

+
+ + +

 	 (3)

recall
TP

TP FN
=

+
 	 (4)

precision
TP

TP FP
=

+
 	 (5)

sensitivity
TP

TP FN
=

+
 	 (6)

specificity
TN

TN FP
=

+
 	 (7)

FPR
FP

FP TN
=

+
 	 (8)

NPV
TN

FN TN
=

+
 	 (9)

F score
Recall Precision

Recall Precision
1

2
_ =

+
* * 	 (10)

EXPERIMENT RESULTS

Dataset Baseline Characteristics
The study’s dataset comprised 5,171 PFT reports, each of which included patient characteristics and 
test values. Table 1 presents a detailed summary of the characteristics of these reports, dividing them 
into three groups: (1) overall PFT reports (N = 5,171); (2) reports labelled as COPD (n = 3,453); 
and (3) reports labelled as normal (n = 1,718). The table also displays the median, first quartile, and 
third quartile of the features of each group. In addition, the authors conducted significance tests for 
each feature of COPD. They found that 15 features had no significant effect on COPD (p > 0.05). As 
shown in Table 1, these features mainly pertain to the chg%1 test value, which measures the rate of 
change in the post-drug test value compared to the pre-drug test value. It is speculated that this type 
of feature may carry relatively little information regarding the patient’s lung function because it only 
reflects the changes in the test value rather than the patient’s overall condition.
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Table 1. Characteristics of the PFT report in the dataset

Variables Total N = 5171 COPD n = 3453 Normal n = 1718 p-Value

  Basic feature

Age, median[Q1,Q3] 64.0 [57.0,64.0] 65.0 [59.0,70.0] 62.0[52.0,69.0] <0.001

Gender <0.001

Male 4077 2975 1102

Female 1094 478 616

Weight, median[Q1,Q3] 57.0 [49.5,65.0] 56.0 [49.0, 64.0] 58.0 [50.0,66.5] <0.001

Height, median[Q1,Q3] 160.0 [155.0,165.0] 160.0 [156.0,165.0] 160.0 [154.0, 165.0] <0.001

Feature Prediction Value

FVC, median[Q1,Q3] 3.07 [2.64,3.42] 3.08 [2.73,3.41] 3.04 [2.40,3.46] <0.001

FEV1, median[Q1,Q3] 2.39 [2.04,2.69] 2.39 [2.09,2.68] 2.38 [1.94,2.74] 0.88

FEV1%FVC, median[Q1,Q3] 83.98 [83.77,84.19] 83.98 [83.77,84.15] 83.98 [83.77,84.23] <0.001

FEV1%VC MAX, median[Q1,Q3] 75.15 [74.07,76.75] 74.97 [74.07,76.18] 75.80 [74.43,77.70] <0.001

VC MAX, median[Q1,Q3] 3.16 [2.72,3.54] 3.17 [2.80,3.52] 3.12 [2.48,3.58] 0.0018

PEF, median[Q1,Q3] 6.96 [6.31,7.44] 6.98 [6.50,7.42] 6.84 [5.67,7.48] <0.001

MMEF 75/25, median[Q1,Q3] 2.86 [2.55,3.14] 2.84 [2.55,3.11] 2.91 [2.55,3.23] <0.001

MEF 75, median[Q1,Q3] 6.24 [5.71,6.60] 6.26 [5.88,6.59] 6.15 [5.16,6.64] <0.001

MEF 50, median[Q1,Q3] 3.59 [3.30,3.88] 3.58 [3.31,3.85] 3.61 [3.28,3.93] <0.001

MEF 25, median[Q1,Q3] 1.10 [0.91,1.33] 1.07 [0.89,1.28] 1.17 [0.95,1.42] <0.001

MVV, median[Q1,Q3] 96.24 [86.63,105.09] 96.43 [88.10,104.65] 95.80 [82.99,105.97] 0.062

Before Bronchodilator Inhalation

FVC, median[Q1,Q3] 2.41 [1.91,2.91] 2.43 [1.96,2.93] 2.37 [1.80,2.90] 0.0062

FEV1, median[Q1,Q3] 1.05 [0.77,1.44] 0.91 [0.69,1.22] 1.42 [1.08,1.79] <0.001

FEV1%FVC, median[Q1,Q3] 44.29 [35.18,55.44] 39.45 [32.26, 46.81] 63.59 [49.99,78.50] <0.001

FEV1%VC MAX, median[Q1,Q3] 44.10 [35.07,55.05] 39.29 [32.13, 46.65] 63.35 [49.87,77.27] <0.001

VC MAX, median[Q1,Q3] 2.42 [1.92,2.93] 2.44 [1.97, 2.94] 2.37 [1.81,2.90] 0.004

PEF, median[Q1,Q3] 3.27 [2.36,4.40] 2.89 [2.17,3.80] 4.27 [3.25,5.57] <0.001

MMEF 75/25, median[Q1,Q3] 0.35 [0.23,0.58] 0.29 [0.21,0.41] 0.70 [0.41, 1.28] <0.001

MEF 75, median[Q1,Q3] 1.01 [0.60,1.84] 0.77 [0.51,1.20] 2.33 [1.37,4.08] <0.001

MEF 50, median[Q1,Q3] 0.44 [0.28,0.76] 0.34 [0.24,0.51] 0.97 [0.55,1.74] <0.001

MEF 25, median[Q1,Q3] 0.18 [0.13,0.27] 0.16 [0.12,0.21] 0.29 [0.18,0.55] <0.001

FET, median[Q1,Q3] 11.41 [8.56,14.75] 12.41 [9.77,15.40] 8.97 [7.01,12.48] <0.001

PIF, median[Q1,Q3] 2.32 [1.63,3.22] 2.26 [1.57,3.14] 2.47 [1.74,3.34] <0.001

FIV1, median[Q1,Q3] 1.53 [1.14,2.00] 1.52 [1.12,1.96] 1.57 [1.20,2.08] <0.001

FEF50%FIF50, median[Q1,Q3] 24.10 [16.19,41.79] 19.57 [14.36,28.04] 45.07 [26.20,82.18] <0.001

MVV, median[Q1,Q3] 44.47 [31.77,59.04] 36.42 [26.76,49.37] 49.75 [36.80,64.16] <0.001

BF MVV, median[Q1,Q3] 68.33 [53.10,81.63] 63.10 [47.79, 77.53] 71.22 [58.03,83.67] <0.001

Value Before Inhalation of Bronchodilator/Predictive Value

FVC, median[Q1,Q3] 81.90 [68.00,94.40] 82.20 [68.20,94.80] 81.25 [67.68,93.13] 0.161

FEV1, median[Q1,Q3] 47.10 [34.30,61.20] 40.55 [30.50,52.78] 61.70 [49.80,71.70] <0.001

FEV1%FVC, median[Q1,Q3] 52.90 [42.00,66.00] 47.00 [38.40,55.95] 75.90 [59.68,93.53] <0.001

continued on following page



International Journal of Information Technologies and Systems Approach
Volume 16 • Issue 3

13

Variables Total N = 5171 COPD n = 3453 Normal n = 1718 p-Value

FEV1%VC MAX, median[Q1,Q3] 58.50 [46.60,73.10] 52.40 [43.00,62.30] 83.10 [66.10,100.00] <0.001

VC MAX, median[Q1,Q3] 79.35 [66.00,91.50] 79.80 [66.20,91.83] 78.60 [65.60,90.50] 0.091

PEF, median[Q1,Q3] 48.50 [35.80,64.18] 42.50 [32.70,54.80] 65.10 [51.60,82.10] <0.001

MMEF 75/25, median[Q1,Q3] 12.60 [8.40,20.00] 10.20 [7.40,14.70] 24.40 [14.80,43.53] <0.001

MEF 75, median[Q1,Q3] 16.90 [9.90,30.00] 12.80 [8.40,19.63] 39.30 [22.85,69.60] <0.001

MEF 50, median[Q1,Q3] 12.30 [7.80,20.40] 9.70 [6.80,14.30] 26.70 [15.60,47.40] <0.001

MEF 25, median[Q1,Q3] 16.70 [12.20,25.30] 14.65 [11.30,19.80] 24.90 [15.40,47.13] <0.001

MVV, median[Q1,Q3] 47.45 [34.70,59.60] 38.60 [28.90,49.95] 53.20 [41.30,64.60] <0.001

After Bronchodilator Inhalation

FVC, median[Q1,Q3] 2.59 [2.05,3.10] 2.64 [2.11,3.12] 2.51 [1.89,3.04] <0.001

FEV1, median[Q1,Q3] 1.17 [0.85,1.56] 1.03 [0.77,1.35] 1.53 [1.19,1.92] <0.001

FEV1%FVC, median[Q1,Q3] 46.21 [36.21,56.60] 40.99 [33.43,48.65] 65.61 [53.00,79.36] <0.001

FEV1%VC MAX, median[Q1,Q3] 46.09 [36.14,56.43] 40.84 [33.35,48.51] 65.44 [52.66,78.88] <0.001

VC MAX, median[Q1,Q3] 2.60 [2.06,3.10] 2.64 [2.12,3.13] 2.51 [1.90,3.04] <0.001

PEF, median[Q1,Q3] 3.61 [2.66,4.81] 3.23 [2.45,4.20] 4.66 [3.54,5.92] <0.001

MMEF 75/25, median[Q1,Q3] 0.41 [0.27,0.65] 0.33 [0.24,0.46] 0.82 [0.48,1.51] <0.001

MEF 75, median[Q1,Q3] 1.19 [0.69,2.10] 0.90 [0.58,1.37] 2.67 [1.65,4.45] <0.001

MEF 50, median[Q1,Q3] 0.51 [0.32,0.86] 0.40 [0.27,0.58] 1.13 [0.66,2.02] <0.001

MEF 25, median[Q1,Q3] 0.19 [0.14,0.29] 0.17 [0.13,0.22] 0.32 [0.20,0.60] <0.001

FET, median[Q1,Q3] 11.41 [8.69,14.72] 12.44 [9.92,15.51] 9.07 [7.00,12.01] <0.001

PIF, median[Q1,Q3] 2.58 [1.79,3.58] 2.55 [1.76,3.59] 2.64 [1.87,3.57] 0.239

FIV1, median[Q1,Q3] 1.64 [1.23,2.12] 1.62 [1.24,2.09] 1.66 [1.21,2.15] 0.019

FEF50%FIF50, median[Q1,Q3] 25.07 [16.56,45.07] 19.80 [14.51, 28.61] 51.29 [29.09, 93.08] <0.001

MVV, median[Q1,Q3] 62.77 [39.60,85.12] 25.85 [18.24,43.29] 67.49 [44.70,89.43] <0.001

BF MVV, median[Q1,Q3] 71.01 [55.06,83.52] 50.11 [34.94,74.76] 73.23 [61.37,83.87] <0.001

Value After Inhalation of Bronchodilator/Predictive Value

FVC, median[Q1,Q3] 87.70 [73.60,100.50] 88.40 [74.60,101.00] 85.80 [71.10,99.50] <0.001

FEV1, median[Q1,Q3] 52.20 [38.00,66.90] 45.50 [34.20,58.10] 67.15 [55.40,78.73] <0.001

FEV1%FVC, median[Q1,Q3] 55.00 [43.00,67.40] 49.00 [39.98,58.00] 78.00 [63.10,94.40] <0.001

FEV1%VC MAX, median[Q1,Q3] 61.40 [48.20,74.90] 54.30 [44.40,64.70] 86.45 [69.80,102.20] <0.001

VC MAX, median[Q1,Q3] 84.90 [71.40,97.40] 85.60 [72.53,97.98] 83.10 [68.90,96.50] <0.001

PEF, median[Q1,Q3] 54.40 [40.20,70.30] 47.90 [36.50,60.50] 71.80 [57.40,87.40] <0.001

MMEF 75/25, median[Q1,Q3] 14.60 [9.70,22.80] 12.00 [8.50,16.50] 28.65 [17.50,50.80] <0.001

MEF 75, median[Q1,Q3] 19.70 [11.60,34.30] 14.70 [9.70,22.50] 45.30 [27.70,77.70] <0.001

MEF 50, median[Q1,Q3] 14.40 [9.00, 23.80] 11.30 [7.80,16.30] 31.30 [18.60,57.00] <0.001

MEF 25, median[Q1,Q3] 18.40 [13.20,27.50] 16.00 [12.20,21.30] 28.20 [18.20,50.35] <0.001

MVV, median[Q1,Q3] 69.00 [48.70,92.60] 29.30 [20.78,50.43] 72.50 [52.50,93.95] <0.001

Change Rate of Values Before and After Inhalation of Bronchodilator

FVC, median[Q1,Q3] 5.53 [-0.35,13.69] 6.27 [0.00,14.71] 4.06 [-1.14,10.90] <0.001

FEV1, median[Q1,Q3] 8.88 [2.72,17.55] 9.79 [3.27,18.76] 7.11 [1.91,14.31] 0.004

continued on following page
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Feature Selection Results
Figure 8 illustrates the results of the feature selection using the LASSO algorithm (Tibshirani et al., 1996). 
Figure 8a shows the LASSO path plot, which visually displays the changes in the feature coefficients in 
the LASSO regression as the regularisation parameter lambda varies. The horizontal axis represents the 
regularisation parameter lambda, the vertical axis represents the feature coefficients, and the coloured 
curves represent distinct features. The variations in the curves reflect the importance of each feature for 
the different lambda values. As lambda increases, some feature coefficients shrink to zero, indicating a 
decreased influence of these features in the model. The vertical black dashed line in Figure 8a represents 
the optimal regularisation parameter lambda value obtained by the LASSO algorithm (0.012).

Figure 8b presents the importance of the feature under the optimal l  value model, with the 
X-axis representing the risk coefficient of the feature and the Y-axis representing the feature name. 

Variables Total N = 5171 COPD n = 3453 Normal n = 1718 p-Value

FEV1%FVC, median[Q1,Q3] 3.33 [-2.63,9.72] 3.51 [-2.94,10.20] 2.90 [-2.08,8.71] 0.531

FEV1%VC MAX, median[Q1,Q3] 3.34 [-2.61,9.89] 3.48 [-2.95,10.35] 3.00 [-1.95,9.06] 0.456

VC MAX, median[Q1,Q3] 5.52 [-0.47,13.80] 6.34 [-0.07,14.77] 4.04 [-1.25,11.21] 0.102

PEF, median[Q1,Q3] 9.99 [2.06,19.61] 10.73 [2.69,20.51] 8.31 [1.03,17.81] 0.512

MMEF 75/25, median[Q1,Q3] 14.24 [0.02,31.59] 14.46 [0.97,30.47] 13.59 [-2.03,34.65] 0.022

MEF 75, median[Q1,Q3] 14.37 [0.95,30.12] 14.89 [1.08,30.81] 13.31 [0.64,28.81] 0.412

MEF 50, median[Q1,Q3] 15.00 [0.00,33.33] 15.00 [0.00,33.09] 14.92 [-1.60,34.33] 0.051

MEF 25, median[Q1,Q3] 10.66 [-6.68,32.80] 10.00 [-4.91,30.00] 12.39 [-10.24,40.00] <0.001

FET, median[Q1,Q3] 1.22 [-12.66,15.84] 1.39 [-11.45,14.67] 0.66 [-16.94,20.27] <0.001

 PIF, median[Q1,Q3] 10.41 [-6.50,31.99] 11.39 [-5.37,33.16] 7.56 [-10.09,29.07] 0.077

FIV1, median[Q1,Q3] 6.69 [-5.27,21.31] 7.60 [-4.17,21.98] 4.36 [-8.43,19.57] 0.454

FEF50%FIF50, median[Q1,Q3] 4.35 [18.11,34.08] 2.72 [-18.82,31.57] 7.39 [-16.62,40.70] 0.002

MVV, median[Q1,Q3] 13.92 [-6.68,48.78] 5.50 [-17.70,16.13] 14.15 [-6.68,49.35] 0.542

BF MVV, median[Q1,Q3] 6.99 [-13.32,26.64] -3.29 [-33.49,22.00] 7.32 [-12.78,27.19] 0.204

COPD, chronic obstructive pulmonary disease; Normal, no chronic obstructive pulmonary disease.

Figure 8. Feature extraction by the LASSO algorithm

Table 1. Continued
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Owing to plot size limitations, features with a risk coefficient of zero were not displayed. Figure 8b 
shows the 34 high-risk (positive coefficients) and low-risk features (negative coefficients). Notably, 
the features of FEV1%VC MAX Pred, FEV1%FVC A2/Pd, FEV1 A1/Pd, MEF75 A2/Pd, and height 
were significant in the results obtained using LASSO (Tibshirani et al., 1996). 

The types of indicators will not be repeated here; only the meaning of the indicators appearing 
for the first time will be described. For instance, FEV1%VC MAX refers to the forced expiratory 
volume in one second as a percentage of the maximum vital capacity. FEV1 denotes forced expiratory 
volume in 1s. MEF75 represents the maximum expiratory flow when 25% of forced vital capacity 
(remaining 75%) is exhaled. The height indicator represented the patient’s height at the time of 
consultation. FEV1%FVC is a known indicator for diagnosing COPD in clinical practice. The sparse 
feature results obtained also verify the usefulness of this indicator. Furthermore, this demonstrates 
that the feature dimensionality reduction method effectively removed the interference from redundant 
features, retained the most relevant features in the sample, and identified new vital features.

Figure 9 shows the results of the group LASSO feature screening (Yuan & Lin, 2006). The 
X-axis indicates the risk coefficient of each feature; the Y-axis shows the corresponding feature 
names. Features with a risk coefficient of zero are not shown. There were 26 high-risk (positive 
coefficient) and low-risk (negative coefficient) features, as shown in Figure 9. Compared with the 
features selected by LASSO, the results of the group LASSO algorithm partly differed. However, 
both methods identified FEV1%FVC A2/Pd as important features.

The top-ranked features in Figure 9 were MEF75 A2/Pd, FEV1%FVC A2/Pd, MEF75 A1/Pd, 
FEV1%FVC P1, and FEV1%FVC A1/Pd. It was observed that the features given high importance 
by the group LASSO algorithm were consistent with those identified by the LASSO algorithm. 
However, they differed in terms of feature types. Both types of sparse feature results were employed 
as the final dataset for PFT report analysis.

Model Training Results
Table 2 presents the evaluation results of the six models trained using the features extracted by LASSO 
(Tibshirani et al., 1996). As shown in Table 2, XGBoost achieved the highest classification accuracy 
of 86.5%, which was also the optimal F1_score. While the other evaluation metrics were slightly lower 

Figure 9. Feature extraction by group LASSO algorithm
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than or equal to the optimal values, the AUC of XGBoost and random forest reached 0.9 (depicted in 
the ROC curve in Figure 10a). Considering all the evaluation metrics, it is concluded that XGBoost 
is the best-performing model among those trained with the features selected by LASSO.

Table 3 presents a detailed overview of the evaluation metrics obtained from the model trained 
using the features selected by group LASSO (Yuan & Lin, 2006). The table shows that Xgboost’s 
classification accuracy is 88.6%, which is 2.1% higher than that of the XGBoost model trained based 
on the features selected by LASSO. Furthermore, the remaining evaluation metrics of the XGBoost 
model reached their optimal values. Figure 10b illustrates the ROC curve of the model trained with 
the features selected by group LASSO. The AUC values of the XGBoost model and the random forest 
model reached their optimal values of 0.9.

Ultimately, the XGBoost model, trained with the features extracted by group LASSO (Yuan & 
Lin, 2006), was used as the COPD auxiliary diagnosis model, GL-XGBoost. The accuracy rate of the 
COPD auxiliary diagnosis model, GL-Xgboost, reached 88.6%. This is 16.2% higher than the 72.4% 
accuracy of the COPD diagnosis model proposed by Topalovic et al. (2019). This was a significant 
breakthrough in the field of COPD auxiliary diagnosis because it achieved state-of-the-art performance. 
The sensitivity of the GL-XGBoost model was 98.5%. It indicated that the model is suitable for large-
scale clinical auxiliary screening, can facilitate early detection of COPD, and enables early intervention.

Table 2. Results of models trained with features extracted by the LASSO algorithm

Evaluation Metrics Accuracy Recall Precision Sensitivity Specificity FPR NPV F1_Score AUC

Logistic 0.859 0.950 0.855 0.950 0.676 0.324 0.870 0.900 0.89

SVM 0.860 0.964 0.847 0.964 0.648 0.351 0.900 0.902 0.85

KNN 0.852 0.984 0.827 0.984 0.586 0.414 0.947 0.899 0.89

decision tree 0.843 0.947 0.840 0.947 0.635 0.365 0.856 0.890 0.87

random forest 0.863 0.970 0.847 0.970 0.649 0.351 0.915 0.905 0.90

Xgboost 0.865 0.970 0.850 0.970 0.654 0.346 0.916 0.906 0.90

Figure 10. Receiver operating characteristic curve of two type features
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In addition, different feature selection methods can significantly affect model performance. In 
comparison to the accuracy of the models trained with LASSO, the use of group LASSO increased 
the accuracy by 2.1%. This indicates that different feature selection methods have different areas 
of focus. In addition, the COPD auxiliary diagnosis problem is better suited for screening with the 
group-sparse feature selection algorithm.

Furthermore, the reasons for the different model performances caused by various feature 
selection algorithms were investigated. Unlike individual sparse feature selection algorithms, group 
sparse feature selection algorithms consider the combined effects of multiple features and output a 
list of features ranked in the order of importance. This approach is particularly suitable for medical 
diagnostic scenarios because a single test value is often inadequate for decision making. Instead, it 
is necessary to consider multiple test values carefully like the operation of the group sparse feature 
selection algorithm. Therefore, for complex medical problems, the group-sparse feature selection 
algorithm is more appropriate for feature screening.

Feature Importance Analysis
This study utilised the framework of SHAP values (Lundberg & Lee, 2017; Lundberg et al., 2018) 
to rank the feature contributions to COPD predictions by averaging the feature importance estimates 
(see Figure 11). Figure 11a presents the SHAP summary plot for the top 20 clinical features for COPD 
prediction. It shows the SHAP values for the most important features of the GL-XGBoost model in 
the training data. The features in the summary plot (Y-axis) were ordered by the mean absolute SHAP 
values, representing the importance of the features in driving COPD prediction. The X-axis represents 
the SHAP value of each sample. The PFT report feature values are coloured according to their relative 
values in Figure 11a, with red indicating high values and blue indicating low values. Negative SHAP 
values indicate an increased risk of COPD; positive values indicate trends toward normal ventilation.

Figure 11a shows that FEV 1% FVC P1 was the most important feature for predicting COPD, 
followed by FEV1% FVC A2/Pd, MEF 75 A2/Pd, FEV 1% VC MAX A1, and FEV 1% VC MAX 
A2/Pd. FEV1%FVC is a crucial indicator for the clinical diagnosis of COPD. The international 
diagnostic criteria for COPD approve it (Pellegrino et al., 2005; Vogelmeier et al., 2017). The authors’ 
GL-XGBoost model validates this known feature by focusing on its post-drug value and post-drug 
ratio to the predicted values. Figure 11a shows the impact of the feature values on the model output. 
The results are in line with our understanding of the impact of previously known features. Taking 
the characteristic age as an example, the risk of COPD increases with age. The massive number of 
older samples in Figure 11a negatively affect the model output, which tends to produce COPD labels.

Furthermore, the model proposes new decision features, such as MEF75 A2/Pd, FEV1%VC MAX 
A1, and FEV1%VC MAX A2/Pd. The specific meanings of these features were described above and 
are not repeated here. The discovery of new vital features means that not only previously known 
clinical features need to be paid attention to, but also newly discovered features should be focused 

Table 3. Results of models trained with features extracted by the group LASSO algorithm

Evaluation Metrics Accuracy Recall Precision Sensitivity Specificity FPR NPV F1_Score AUC

logistic 0.867 0.936 0.861 0.936 0.685 0.315 0.852 0.903 0.89

SVM 0.756 0.964 0.744 0.964 0.344 0.656 0.829 0.840 0.89

KNN 0.875 0.983 0.852 0.983 0.662 0.338 0.950 0.913 0.89

decision tree 0.866 0.965 0.852 0.965 0.670 0.330 0.906 0.905 0.86

random forest 0.883 0.980 0.855 0.981 0.670 0.330 0.950 0.919 0.90

Xgboost 0.886 0.985 0.862 0.985 0.689 0.310 0.960 0.920 0.90
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on in the process of clinical diagnosis. Doctors should pay attention to when these characteristics 
change significantly after bronchodilator inhalation.

Figure 11b shows the ability of each feature to affect the model output sorted by the mean absolute 
value of SHAP. Figure 11b shows the relative size of the ability of each feature to affect the model 
output. This demonstrates the importance ranking of features and the decision-making ratio of each 
feature in the model output more intuitively. Considering the influence of FEV1%FVC P1 on the 
model output as a benchmark, FEV1%FVC A2/Pd accounted for approximately two-thirds, MEF75 
A2/Pd and FEV1%VC MAX A1 accounted for nearly half, and FEV1%VC MAX A2/Pd accounted 
for slightly less. When making clinical decisions, doctors should pay attention to the suggestions 
provided by the model.

Moreover, it provides differentiated attention based on the importance ranking of the features. 
When focusing on a high proportion of decision-making features, even small changes should be 
carefully considered. Certain tolerance should be given to changes in characteristics that account for 
a small proportion of decision making.

CONCLUSION

This study presents a novel approach for COPD auxiliary diagnosis using clinical PFTs. The authors 
developed a comprehensive GL-XGBoost algorithm with exceptional performance, achieving an 
88.6% accuracy and 98.5% sensitivity. As the first study to utilise large-scale PFT reports for COPD 
diagnosis, this study overcomes data acquisition barriers, opens avenues in lung disease analysis, 
investigates the impact of different feature selection algorithms on model performance, and applies 
the SHAP algorithm to analyse the importance of GL-Xgboost.

Figure 11. Feature inspection for GL-Xgboost based on SHAP value
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A limitation of this study is found in the need for a larger dataset to validate the transferability 
and validity of the model. This requires the collection of real data from other hospitals for model 
verification and improvement. By integrating the model with clinicians’ expertise, diagnostic accuracy 
can be enhanced, COPD misdiagnosis can be reduced, and clinical resources can be saved by avoiding 
redundant examinations.
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