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ABSTRACT

This study explores the integration of deep learning (DL) technology and the guided simulated 
annealing algorithm (GSAA) to optimize closed-loop supply chains (CLSC) for sustainable 
development. By applying DL for predictive analysis and GSAA for optimization, the research aims to 
enhance CLSC operational efficiency and environmental sustainability. The methodology combines a 
review of the CLSC framework with practical applications of DL and GSAA, aiming to reduce waste, 
maximize resource utilization, and minimize environmental impact. An experimental comparison of 
this approach against traditional optimization strategies demonstrates the proposed method’s superior 
effectiveness and efficiency. The findings reveal that the DL-GSAA optimization significantly 
improves CLSC sustainability and efficiency, with GSAA showing promising convergence properties. 
This study underscores the importance of advanced technological solutions in achieving sustainable 
supply chain management, offering practical insights for businesses and supply chain managers.
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INTRODUCTION

The conventional supply chain, while foundational to global commerce, increasingly falls short in 
addressing critical challenges such as resource scarcity and environmental degradation. This shortfall 
impedes sustainable development, necessitating innovative approaches to reconcile economic growth 
with ecological stewardship. The closed-loop supply chain (CLSC) has emerged as a promising 
solution, offering pathways to mitigate environmental impact while fostering economic development 
and promoting harmony between human activities and natural ecosystems. In the realm of enterprise 
development, the rapid pace of scientific advancement exacerbates the challenge, leading to frequent 
product updates that contribute to resource waste and environmental harm. This dynamic places 
enterprises at the crossroads of economic and environmental objectives, driving a shift towards CLSC 
practices to achieve a balance. Notable contributions in this field include the work of Bressanelli et 
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al. (2019), who explored the economic aspects of CLSC management and proposed a quantitative 
model for recycling and reusing waste products, providing insights into reducing pollution from 
product production. Similarly, Kazancoglu et al. (2021) detailed the structure and evolution of 
CLSC, highlighting its advantages over traditional models and laying out the guiding principles for 
its design. Recognizing the potential of CLSC to address these pressing issues, this study delves into 
an exhaustive examination of CLSC, beginning with an analysis of its core principles and unique 
characteristics. Building on this foundation, it introduces an innovative application of deep learning 
algorithms to refine CLSC management. Specifically, it develops a predictive model, employing the 
Multi-Head Attention Gated Recurrent Unit (MAGRU) algorithm, a novel approach in this context. 
Furthermore, it harnesses the power of the genetic simulated annealing algorithm for simulation 
purposes, achieving an optimal solution with remarkable convergence properties. This methodology 
not only underscores the viability of CLSC in mitigating environmental impacts but also showcases 
the potential for advanced computational techniques to revolutionize enterprise development in China, 
offering new perspectives for future research and implementation.

LITeRATURe ReVIew

As the global trade competition becomes further intensified, Supply Chain Management (SCM) 
technology has become critical to maintaining competitive advantages for enterprises. Two Deep 
Reinforcement Learning (DRL) based methods are proposed to solve multi-period capacitated supply 
chain optimization problems under demand uncertainty (Peng et al., 2019). Intuition-based approaches 
are replaced by supply chain computerized solutions such as inventory management, warehousing, 
allocation, and replenishment. Hachaïchi et al. (2020) aim at building a reinforcement learning agent 
capable of placing optimal orders for the sake of constructing a replenishment plan for next period. 
Current supply chain efficiency management methods cannot effectively control the risk caused 
by inefficient supply chain management. In order to study improvement in supply chain efficiency 
management supported by machine learning and neural network technology, Han and Zhang (2020) 
built a supply chain risk management model based on learning and neural networks. However, the 
cost control ability of the model is poor. For this reason, Guan and Yu (2021) designed a supply chain 
resource distribution allocation model based on deep learning. Huang and Tan (2021) introduced the 
strategy research of supply chain management order based on a reinforcement learning algorithm. 
The supply chain order management process involves conducting questionnaire surveys and seminars 
to understand the current process of supply chain order management and the problems derived from 
the analysis of data based on the deep learning algorithm.

Supply chain management and communication are a key research direction in the IoT environment, 
while inventory management (IM) has increasingly become a core part of the whole life cycle 
management process of the supply chain. The IM process is firstly formulated as a mathematical 
model, in which the objective is to minimize logistic cost and jointly maximize profit. On this basis, 
a deep inventory management (DIM) method is proposed to address this model by using the long 
short-term memory (LSTM) theory of deep learning (DL) (Deng & Liu, 2021). Kegenbekov and 
Jackson (2021) demonstrate how a deep reinforcement learning agent based on the proximal policy 
optimization algorithm can synchronize inbound and outbound flows and support business continuity 
operating in the stochastic and nonstationary environment if end-to-end visibility is provided. The 
deep reinforcement learning agent is built upon the Proximal Policy Optimization algorithm, which 
does not require hardcoded action space and exhaustive hyperparameter tuning. The manufacturer 
and retailer are two supply chain players, where the retailer is unreliable and may not send accurate 
demand information to the manufacturer. Sardar et al. (2021) propose a Machine Learning (ML) 
approach for on-demand forecasting under smart supply chain management. Guo and Zou (2022) 
introduce deep learning neural network to cross-border logistics and supply chain based on the 
analysis of the existing cross-border logistics model and supply chain model and the status quo of 
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e-commerce development. They show that introducing deep learning neural networks into CBEC 
logistics and supply chain can improve the efficiency of logistics and supply chain. Long et al. (2023) 
use artificial intelligence systems to make intelligent decisions for supply chain mode selection in 
healthcare. This paper presents the intelligent choice optimization method of supply chain mode in 
healthcare based on deep reinforcement learning algorithm.

MATeRIALS AND MeTHODS

DL Technology
Deep Learning (DL) falls under the extensive domain of Machine Learning (ML) and stands as one 
of the most widely embraced methodologies. It involves feature learning due to its structured nature 
and is also referred to as featureless supervised learning (Garcia-Buendia et al., 2021). DL operates 
on a neural network, exhibiting greater complexity compared to traditional ML. Its processes are more 
intricate than those of traditional algorithms, and the operational principles diverge from those of 
conventional algorithms. Nonetheless, the learning outcomes yielded by the DL model significantly 
surpass those of traditional algorithms, with notably because of faster execution times (Reimann et 
al., 2019). Initially limited to image processing, DL has undergone continuous advancement and 
finds application in various domains such as face recognition, smart home technology, environmental 
surveys, and beyond. Its growing integration into human activities and society has led to profound 
impacts (Su et al., 2019). Figure 1 illustrates the parallels between DL and traditional machine learning. 
The advantages and disadvantages of DL are exhibited in Table 1.

Convolutional Neural Network (CNN)
Convolutional Neural Networks (CNNs) represent one of the most extensively employed neural 
network architectures, excluding the DL network, which builds upon the foundations of traditional 

Figure 1. Comparative analysis of deep learning (DL) and traditional machine learning (ML) techniques

Table 1. Advantages and Disadvantages of DL

Advantages Disadvantages

Strong learning ability Large amount of computation and poor portability

Wide coverage and good adaptability High hardware requirements

Data-driven, high ceiling Complex model design

Good portability Prone to bias
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networks (Abdi et al., 2021). The CNN structure follows a systematic and attainable design, comprising 
an input layer, convolutional layer, pooling layer, and output layer. The algorithm operates by feeding 
the dataset into the CNN, performing data calculations, and producing results through multiple steps, 
including pooling. Its application domain primarily revolves around image processing, where it has 
made significant contributions to environmental monitoring and medical fields. Furthermore, CNN 
can be synergistically integrated with diverse algorithms to process data and achieve desired outcomes, 
boasting exceptional recognition rates, accuracy, and robustness (Giri & Masanta, 2020) (see Figure 2).

Recurrent Neural Network (RNN)
In contrast to CNN, which processes image data as input, RNN takes sequential data as input, 
establishing connections between network nodes based on the sequence (Su & Sun, 2018). RNN is 
iterative, possessing comprehensive parameters and the ability to retain historical datasets accurately, 
rendering it superior to alternative methods for sequence processing (Zare Mehrjerdi & Lotfi, 2019). 
Beyond its prowess in image recognition, RNN consistently demonstrates efficacy in handling textual 
and video information. The RNN model is depicted in Figure 3.

Auto-encoder (Ae)
The principle of the AE neural network is to use backpropagation to make the input value equal to 
the output value, that is, y(i) = x(i), which belongs to the same unsupervised learning algorithm as 

Figure 2. Architecture of the convolutional neural network (CNN) model

Figure 3. Structure of the RNN model
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DL. The composition of the AE neural network has two parts, namely the encoding part and the 
decoding part (Prakash et al., 2020). AE is usually used in data processing, which can compress data 
for subsequent calculation (Goli et al., 2020). It has the characteristics of fast calculation speed and 
high robustness. An example of an AE neural network is shown in Figure 4.

When applying deep learning to supply chain management, the research leverages the advantages 
of RNN in time series prediction, leading to the introduction of the Gated Recurrent Unit (GRU) 
algorithm in this research. Given an input sequence X x x x

t
= { }1 2

, , , , the encoder is used to learn 
the mapping from x to h

t
, where t denotes the time step, and the calculation is as shown in Equation 

1:

h f
t
= (h x

t
t

-1, ) (1)

Equation 1 represents the calculation used to update the hidden layer state h
t
 of the encoder in 

the research on applying deep learning to supply chain management. The hidden layer state, represented 
by h

t
, captures the encoded information at time step t. It is updated based on the previous hidden 

layer state h
t-1  and the current input data xt . The mapping function f  (h x

t
t

-1, ) determines how 
the hidden layer state is updated using the previous state and the current input. In this research, the 
GRU algorithm is chosen as the mapping function. GRU is a type of RNN that is specifically designed 
to capture temporal dependencies in sequential data. The use of GRU as the mapping function allows 
the model to capture and learn the temporal dependencies present in the input sequence. Temporal 
dependencies refer to the relationship between data points at different time steps and are crucial for 
accurate time series predictions in supply chain management. By utilizing the GRU algorithm as the 
mapping function in Equation 1, this research aims to leverage the advantages of deep learning and 
RNNs in capturing the temporal patterns and predicting future outcomes in the context of supply 
chain management. The GRU’s ability to model long-term dependencies and handle vanishing or 

Figure 4. Architecture of the autoencoder (AE) neural network model
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exploding gradients makes it suitable for analyzing time series data and making predictions based 
on historical trends.

Each GRU unit is governed by reset and update gates, and their updating algorithms are expressed 
in Equations 2 and 3:

R t XW h W b
t xr t hr r

_ = + +( )−s
1

 (2)
Z XW h W b
t t xz t hz z
= + +( )−s

1
 (3)

In Equations 2 and 3, h denotes the number of hidden units. x R
t

n d∈ ×  represents a batch of 
inputs at a given time step t with n samples and d input dimensions. h

t-1  represents the hidden state 
from the previous step, R

t
 represents the reset gate, and Z

t
 represents the update gate. W W

xr hr
, , 

W
xz

, and W
hz

 are weight parameters that the model needs to learn, while b
r
 and b

z
 are bias parameters. 

Finally, the sigmoid function is applied to constrain the values to the range [0,1]. By incorporating 
the reset and update gates, the GRU units are equipped to update the hidden state adaptively based 
on the current input and the previous hidden state, allowing the model to capture long-term 
dependencies and effectively handle sequential data in the context of supply chain management. The 
hidden state at time step t is given by Equations 4 and 5:

R XW h W b
t t xr t hr r
= + +( )−s

1
 (4)

Z XW h W b
t t xz t hz z
= + +( )−s

1
 (5)

Dealing with lengthy sequences poses challenges for traditional RNN or GRU models due to 
issues such as vanishing or exploding gradients, impeding the capture of long-range dependencies. 
To address this, the Multi-Head Attention (MA) mechanism allows the model to focus on information 
from various positions, mitigating these problems and facilitating superior capture of long-distance 
dependencies in sequences. Consequently, the MAGRU algorithm is introduced, incorporating the 
MA mechanism. By concurrently attending to information from diverse positions in sequence data, 
MA aids in capturing global context and correlations. It thereby enhances the performance of the 
GRU model, particularly in managing long-range dependencies and crucial sequence information.

In the MAGRU algorithm, given a sequence of length q, MAGRU utilizes the hidden state and 
the current state of the GRU unit to establish an attention mechanism, as shown in Equation 6:

s g h W h s U x b
t
q

l
T
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= + +( )( )− −tan ;
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In Equation 6, g W U
l l l
, ,  represent parameters that need to be learned, and b

l
 denotes bias values. 

The calculation of attention weights is given by Equation 7:

w
j
t t j

q

T

t q

exp s

exp s
=

( )
( )

=∑
,

,1

 (7)

Equation 7 defines the calculation of importance weights w
j
t  for the j-th input sequence at time 

step t using an attention mechanism. w
j
t  represents the importance weight assigned to the j-th input 

sequence at time step t. The importance weights are calculated using the softmax function, which 
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transforms the results obtained from the attention mechanism into probability values. By assigning 
weights to different input sequences, the model can focus on relevant information and emphasize 
certain parts of the input data during the encoding process. The softmax function normalizes the 
scores s

t j,
 obtained from the attention mechanism by exponentiating them and dividing by the sum 

of exponentiated scores across all input sequences at time step t. This normalization process ensures 
that the importance weights sum up to 1, making them interpretable as probabilities.

Each batch of data is assigned a batch of samples p based on their weights, and these batches 
of samples form the input sequence to the GRU. The sequence can be encoded based on importance 
through these weights, and the final output after the encoder is given by Equation 8:

x
t
' = � w w w

t t t t t
n
t
n
T

x x x1 1 2 2, ,...,( )  (8)

After calculating the importance weights, the input sequences are combined based on these 
weights to form a weighted input sequence x

t
'  that captures the essential information. Each input 

sample is multiplied by its corresponding importance weight and aggregated to create the encoded 
representation of the input data at time step t. This weighted encoding approach allows the model to 
focus on relevant information while considering the importance of each input sequence in the context 
of the entire batch.

To mitigate information loss and improve predictive performance, a decoder is employed after 
the encoding process. The decoder takes the encoded data as input and generates predictions for the 
target variables, leveraging the encoded information to make accurate forecasts or decisions in supply 
chain management scenarios. By incorporating attention mechanisms and weighted encoding, the 
model can effectively leverage relevant information from input sequences, address issues related to 
information loss and sequence length limitations, and enhance predictive capabilities in supply chain 
management tasks.

Analysis and Construction of a Closed Loop Supply Chain 
Management Prediction Model Based on MAGRU
CLSC comprises two parts: the forward supply chain and the reverse supply chain. The former focuses 
on reducing production costs, improving efficiency, and minimizing waste while meeting production 
requirements. It involves the process of delivering products to consumers without causing resource 
waste. In contrast, the reverse supply chain involves recovering products from consumers, reprocessing 
them, and disposing of them in an environmentally friendly and cost-effective way. Both chains have 
the common purpose of protecting the environment and achieving economic and environmental 
benefits, which matches the characteristics of a traditional supply chain. However, CLSC has its own 
features that require advanced planning, consideration of recycling methods, environmental impact, 
reprocessing processes, and cost factors. More significant responsibility is involved in protecting the 
environment while ensuring economic benefits, as the recycling of waste resources has a profound 
influence on human living conditions.

The structure of CLSC consists of several components; the forward and reverse supply chains 
are the most crucial. According to Zailani et al. (2020), the value of the reverse supply chain is 
more significant, and it requires more effort to ensure the secondary utilization of resources, reduce 
environmental pollution, and achieve environmentally friendly production. Figure 5 represents the 
structure of CLSC.

CLSC has five different models: “Retailer sells and recycles, Retailer sells but third party recycles, 
Retailer sells but manufacturer recycles, Manufacturer sells directly and recycles, Manufacturer sells 
to 3rd party recycling,” as shown in Figure 6.
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The construction of the CLSC management prediction model based on MAGRU involves several 
primary steps. These steps include preparing time series data, which encompasses crucial information 
necessary for effective supply chain management such as production quantities, inventory levels, and 
demand changes. To capture long-distance dependencies and global context information in sequence 
data, an innovative encoder is established using the MAGRU algorithm, incorporating a MA into the 
GRU unit (Wu & Zhou, 2019). The output of this encoder is then passed to the decoder, which resolves 
the issues of information loss and excessively long sequences resulting from encoding information 
into a fixed-length vector. Consequently, the predictive performance of the model is enhanced. During 
the model training phase, the constructed MAGRU model is adjusted using historical data to meet 
the specific requirements of supply chain management. This trained model accurately predicts future 
supply chain data, facilitating the formulation of effective management strategies, optimization of 
resource allocation, and improvement of supply chain efficiency and sustainability. The key innovation 
lies in the integration of the MAGRU algorithm with the decoder, which overcomes the limitations of 
traditional models in handling long sequences and complex dependencies. Thus, this provides a novel 
predictive model for CLSC management. The algorithmic flow of applying the MAGRU algorithm 
to CLSC management prediction is illustrated in Algorithm 1.

Coordination of CLSC Contract
The efficient operation of a supply chain relies on predetermined principles that ensure the interests of 
both suppliers and sellers, promote transparency, and aim for a win-win situation (Tang et al., 2020). 
To achieve this, supply chain contracts play a crucial role in coordinating the efforts and benefits of 
each party. There are four fundamental types of contracts in a supply chain:

1.  The wholesale price contract involves the retailer determining the wholesale quantity based on 
customer demand, negotiating the wholesale price with the customer, and informing the supplier 

Figure 5. Structure of a closed-loop supply chain (CLSC)
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of the price and quantity. Suppliers produce and sell to retailers, and the retailer is responsible 
for handling any unsalable products (Modak & Kelle, 2021).

2.  In the repurchase contract, if the retailer has unsalable products, the supplier agrees to repurchase 
them at a negotiated price, providing a safeguard for the retailer. This contract also allows retailers 
to increase the quantity when purchasing products, achieving mutual benefit (Mirzaei et al., 
2023).

3.  A revenue sharing contract enables the supplier and retailer to share profits and revenues by 
reducing the product’s price. This contract ensures a proportional sharing of revenue between 
retailers and suppliers, fostering a mutually beneficial relationship.

4.  The quantity flexible contract involves the retailer predicting the number of products that can be 
sold and placing orders accordingly. If the predetermined amount is insufficient to meet customer 
demand, the supplier increases production to fulfil the retailer’s needs (Rajabzadeh Gatari et al., 
2021).

Figure 6. Five models of closed-loop supply chains (CLS)
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Effective CLSC management balances economic interests and environmental protection, leading to 
sustainable social development. In the current challenging economic environment, achieving economic 
development extends beyond competition between individual enterprises and has transitioned into 
comparative competition between supply chains. Implementing effective supply chain management 
relies on well-designed supply chain contracts that maximize benefits for all stakeholders (Mishra 
et al., 2018).

However, implementing CLSC is challenging due to complex structures and incomplete 
information. Each member of the supply chain has their own selfish desires, making the practice 
process difficult and the management of CLSC complicated. To ensure operational efficiency and 
to meet overall interests, it is crucial to establish appropriate supply chain management measures, 
such as supply chain contracts (Zhao & Sun, 2020). These contracts protect the rights and interests 
of each member while also setting boundaries on their behavior. By strictly adhering to the contract 
and regulating their actions, members maintain order and guarantee enterprise interests on a small 
scale while preserving ecological balance on a larger scale, resulting in numerous benefits.

Supply Chain emergencies and emergency Management
In the 21st century, emergencies such as natural disasters, accidents, social security incidents, and 
public health crises have had a severe impact on China, affecting the stability of society and economic 
development (Hajiaghaei-Keshteli et al., 2018). These emergencies have led to various consequences, 
impacting human safety and the functioning of supply chain systems (Ashtab & Tosarkani, 2023). 

Algorithm 1. MAGRU algorithm applied to CLSC management prediction algorithm

1 Start

2 Input: Supply chain timing data such as production quantity, inventory level, and demand changes

3 Output: Prediction results of CLSC management

4 # Build the MAGRU model

5 def build_magru_model(input_shape, output_shape, num_heads=4, gru_units=64):

6 # Encoder part

7 inputs = tf.keras.Input(shape=input_shape, name=‘input_sequence’)

8 gru_output, gru_state = GRU(gru_units, return_sequences=True, return_state=True)(inputs)

9 attention_output = MultiHeadAttention(num_heads=num_heads)([gru_output, gru_output])

10 # Decoder part

11 decoder_input = tf.keras.Input(shape=(output_shape[0], output_shape[1]), name=‘decoder_input’)

12 decoder_gru_output = GRU(gru_units, return_sequences=True)(decoder_input)

13 decoder_attention_output = MultiHeadAttention(num_heads=num_heads)([decoder_gru_output, decoder_gru_
output])

14 # Combine encoder and decoder outputs

15 combined_output = tf.concat([attention_output, decoder_attention_output], axis=-1)

16 # Output layer

17 outputs = Dense(output_shape[1], activation=‘linear’)(combined_output)

18 model = tf.keras.Model(inputs=[inputs, decoder_input], outputs=outputs, name=‘magru_model’)

19 return model

20 # Compile and train the model (using an appropriate optimizer, loss function, and training data)

21 End
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Supply interruptions, operational disruptions, and sudden changes in demand represent the risks 
associated with these emergencies (Ghasemi & Abolghasemian, 2023). Emergency strategies 
within supply chain enterprises are designed to address different levels of operational and supply 
disruptions (Liu et al., 2023). When facing the risk of sudden demand changes, vertical coordination 
among enterprises is an effective emergency strategy, while risks faced by upstream and downstream 
enterprises in the supply chain can be mitigated through emergency contracts.

The significant impact of emergencies on enterprises and supply chain management has been 
evident in events such as SARS, the Sanlu milk powder incident, and the Qinghai Yushu earthquake. 
These emergencies have led to supply chain imbalances, including disruptions to logistics and capital 
flow, interrupted information sharing, production-sales mismatches, drastic shifts in demand, raw 
material shortages, increased production costs, fluctuating social demand, and damage to goods and 
services. Addressing emergencies in the supply chain system has become a crucial area of interest 
due to its practical significance and guiding role in safeguarding human lives, property, and consumer 
rights.

While the probability of sudden emergencies is low, their occurrence can lead to catastrophic 
consequences, disrupting the flow of resources within the supply chain and affecting trade between 
nodes (Pan & Miao, 2023). The disruption caused by emergencies can lead to significant losses for 
individual enterprises and the entire supply chain system (Kim et al., 2023). As the frequency of 
emergencies continues to rise, improving the ability of supply chain members to manage emergencies 
has become an essential and valuable research focus. Effective emergency management aims to control 
emergencies by integrating the resources of all parties, improving the ability to foresee, respond to, 
and recover from emergencies, and minimizing losses. Coordination mechanisms within the supply 
chain are adjusted to address market size changes resulting from emergencies, ensuring supply chain 
system coordination and minimizing disruptions.

Applying coordinated contracts in the context of emergency situations within the CLSC greatly 
enhances the ability of each node enterprise to manage emergencies and adapt to the evolving 
production environment. This approach also fosters better coordination of member benefits at all 
levels within the CLSC and ensures overall benefits for the entire supply chain during emergencies.

Genetic Algorithm
The Genetic Algorithm (GA) is a computational model designed and proposed based on the 
evolutionary laws found in nature. It simulates both the natural selection process described by 
Darwin’s theory of biological evolution and the genetic mechanisms involved in biological evolution. 
By simulating the natural evolutionary process, the model aims to find the optimal solution. Through 
mathematical transformations, the algorithm used in biological evolution can be simulated in computer 
operations involving crossover and mutation similar to chromosomal genes. When addressing complex 
combinatorial optimization problems, this algorithm demonstrates faster computation and achieves 
superior optimization results compared to conventional algorithms. As a result, GA has extensive 
applications in solving various problems in the fields of combinatorial optimization, ML, signal 
processing, adaptive control, and artificial life.

In GA, the probability of selection is closely related to fitness. The higher the fitness, the 
greater the probability of being selected. The specific expression for the selection operator is given 
in Equation 9:

p
i

f

f

i

i

n

i

�=

=∑
�
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Equation 9 describes the selection operator in a GA, where the probability ( p
i
) of selecting an 

individual, i, is proportional to an individual’s fitness ( f
i
). Higher fitness values result in greater 

probabilities of being selected for reproduction or further processing. Fitness is a measure of how 
well an individual performs in the given problem domain. It indicates the quality or suitability of the 
individual’s solution or phenotype. The probability of selection is calculated by dividing the fitness 

of individual i by the sum of fitness values across all individuals in the population 
i

n

i
f

=
∑
1

. This 

normalization process ensures that the selection probabilities sum up to 1, as they represent 
probabilities.

The selection operator in GA aims to mimic natural selection, whereby individuals with higher 
fitness have a higher chance of being selected for reproduction and passing their genetic material 
to subsequent generations. By assigning selection probabilities based on fitness, GA can bias the 
selection process towards better-performing individuals, promoting the convergence towards optimal 
solutions over successive generations.

The fitness function Fit can be expressed as shown in Equation 10:

Fit = 
p p

p
all

1 2
+

 (10)

Equation 10 describes the fitness function for a population of species in a genetic algorithm, 
where the fitness (Fit) is defined as a ratio of probabilities. Fit represents the fitness value associated 
with a population of a species in the GA. The fitness function evaluates the quality of solutions or 
individuals in the population and guides the evolutionary process towards better-performing 
individuals. p

1
 and p

2
 represent the probability values associated with two different species in the 

population, typically the parent and offspring in a generational GA. p
all

 refers to the sum of probability 
values across all species in the population. The fitness value is calculated by taking the sum of two 
probability values and dividing by the total probability across all species in the population. This 
ratio-based approach ensures that the fitness value ranges from 0 to 1, with higher values indicating 
better-performing solutions. The fitness function in GA plays a crucial role in evaluating the quality 
of solutions and guiding the search towards optimal solutions.

In Equation 10, p
1

 and p
2

 refer to the initial fitness value and the fitness value of the new 
generation of species, respectively. p

all
 represents the total number of records in the sample dataset. 

Further calculations include the self-adaptive mutation rate p
m

 and the crossover rate p
c

, as illustrated 
in Equations 11 and 12:

p pm pm
popsize n

popsizem pm= + −( ) −
1 2 1

*  (11)

p pc pc pc
popsize n

popsizec
= − −( ) −

1 2 1
*  (12)

In Equations 11 and 12, pm
1
 and pm

2
 represent the maximum and minimum self-adaptive 

mutation rates, while pc
1
 and pc

2
 represent the maximum and minimum crossover rates. The 

parameter n denotes the number of individuals. The variations in n and pc accompany the algorithm’s 
iteration process. The changes in pm and pc are determined based on the variations in n.
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Simulated Annealing Algorithm (SAA)
The basic principle of solid annealing serves as the foundation for SAA, a fundamental probability 
algorithm. This principle involves heating the solid’s temperature and then gradually cooling it down. 
As the temperature rises during heating, the particles within the solid become disordered, leading to 
an increase in internal energy. Conversely, during the slow cooling process, the particles reorganize, 
reaching an equilibrium state at each temperature. Eventually, at normal temperature, the particles 
reach the ground state, resulting in the lowest internal energy.

The combination of GA and SAA enhances the accuracy of the algorithm while addressing the 
premature convergence issue of GA and the low robustness of SAA. Additionally, a fitness function 
is designed to facilitate the algorithm in obtaining the optimal solution. The specific algorithmic 
flow is depicted in Figure 7.

Figure 7. Flow of GA and SAA
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The specific algorithm flow is as follows:

1.  Algorithm parameters are initialized: population size, number of iterations, crossover and mutation 
probability, and temperature.

2.  The fitness value corresponding to each group is calculated to determine the decision variable 
of each group.

3.  The initial value of the loop count variable is 0, that is, gen = 0.
4.  SAA is used to select new individuals and to perform genetic manipulation and selection on new 

individuals.
5.  It should be determined whether gen is less than the maximum number of iterations. If it is less 

than, then gen = gen + 1, one should go to step 4; otherwise, one should go to step 6.
6.  It should be judged whether the temperature is lower than the final temperature. If it is lower, 

the algorithm ends, if it is not lower, one should start the cooling operation and turn to step 3.

VeNSIM Simulation Software
The software used for the simulation is VENSIM PLE, which is a dynamics-based installation package 
that enables modeling operations, features visualization, optimizes and conceives models that have 
been built, and records data. It can establish a dynamic model, mark the parameters of each variable, 
analyze the relationship, and finally establish an equation and record it in the model. In the process 
of use, the parameters are continuously adjusted to make the model more stable and accurate. The 
general process of using software to deal with problems is demonstrated in Figure 8.

Figure 8. Utilizing software for problem-solving processes
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ReSULTS AND DISCUSSION

Parameter Settings of the CLSC Model
The parameters of the model are the basic parameters related to the recycling and remanufacturing 
of a product by a product recycling remanufacturer (see Table 2).

Cin: Inspection and Classification Cost of Recycled Products (Unit: $5)
This parameter represents the cost associated with inspecting and classifying recycled products. It 
accounts for expenses incurred during the quality assessment and categorization of recycled items 
before further processing or remanufacturing. The value assigned to Cin is $5, denoting the cost per 
unit of recycled product.

Cre: Cost of Direct Processing and Remanufacturing (Unit: $5)
Cre indicates the cost involved in directly processing and remanufacturing recycled products. It 
encompasses expenses related to transforming recycled materials into finished goods or components. 
The assigned value for Cre is $5, reflecting the cost per unit of direct processing and remanufacturing.

Prma: Profit from Processing Into Recycled Raw Materials (Unit: $6)
Prma signifies the profit obtained from processing recycled products into recycled raw materials. It 
represents the financial gain achieved by converting recycled items into reusable materials that can 
be sold or utilized in subsequent manufacturing processes. The value assigned to Prma is $6, denoting 
the profit per unit of processed recycled raw material.

Crma: Cost of Recycling and Processing Used as Raw Materials (Unit: $4)
Crma denotes the cost associated with recycling and processing used materials to obtain raw materials. 
It encompasses expenses incurred during the collection, sorting, and transformation of used items into 
raw materials suitable for manufacturing purposes. The assigned value for Crma is $4, representing 
the cost per unit of recycling and processing used as raw materials.

Fitness Simulation of GA
According to the specified parameters and GA, the fitness curve of the shown function can be obtained 
by programming.

Figure 9 visually represents the variation in fitness values throughout the iterative process 
of the GA as the number of iterations increases. This graphical depiction offers valuable insights 
into the algorithm’s performance and efficiency. The plot compares the optimal fitness value with 
the average fitness value, emphasizing the convergence that occurs around the 15th iteration. This 
convergence indicates that the GA algorithm has identified a relatively excellent solution within a 
short timeframe. The sharp decrease in fitness values signifies the algorithm’s ability to improve 
its performance quickly and approach the optimal solution. Moreover, the graph showcases that the 
algorithm can achieve satisfactory results with only a small number of iterations, highlighting its 
efficiency in finding solutions. The rapid convergence observed after 15 iterations illustrates the 
algorithm’s effectiveness in optimizing its search process and reaching a desirable outcome promptly. 
The trend displayed by the optimal fitness value further confirms the GA algorithm’s superiority 

Table 2. Related basic parameters

Cin 5 Cre 5

Prma 6 Crma 4
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in conducting a global search. This trend demonstrates the algorithm’s capability to explore a wide 
range of potential solutions and converge towards the most optimal one efficiently.

Fitness Simulation of SAA
According to the specified parameters and SAA, the fitness curve of the expressed function can be 
obtained by programming.

Figure 10 visually represents the variation in fitness values throughout the iteration process of 
the SAA as the number of iterations increases. This graphical illustration provides valuable insights 
into the algorithm’s performance. The plot compares the average fitness value with the optimal 
fitness value, highlighting the algorithm’s effectiveness. Notably, when the number of iterations 

Figure 9. Fitness curve of GA solution

Figure 10. Fitness curve of SAA solution
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reaches 160, the optimal fitness value is attained, indicating that the algorithm has discovered the 
best solution within the current population. This finding is significant in evaluating the algorithm’s 
ability to identify the most optimal solution. Additionally, an analysis of the difference between the 
average fitness value and the optimal fitness value may reveal a discernible trend. This observation 
becomes crucial in assessing the algorithm’s global search capability and population diversity. By 
examining this trend, we can determine if the algorithm consistently improves its performance over 
time. Furthermore, the favorable convergence observed with a higher number of iterations suggests that 
the SAA algorithm can find excellent solutions within a relatively extended period. This characteristic 
is particularly valuable for problems that require comprehensive exploration of potential solutions. 
The trend displayed by the optimal fitness value further strengthens the algorithm’s superiority in 
global search. This finding has practical implications, especially for problems that demand a globally 
optimal solution. In conclusion, Figure 10 provides a visual representation of the fitness curve of 
the SAA algorithm. The convergence observed at around 160 iterations indicates the algorithm’s 
capability to discover the best solution within the population. The trend displayed by the optimal fitness 
value highlights the algorithm’s effectiveness in conducting a global search, making it applicable to 
problems requiring a globally optimal solution.

Fitness Simulation of GSAA
According to the specified parameters and GSAA, the fitness curve of the displayed function can be 
obtained by programming.

Figure 11 visually represents the convergence of the fitness function as the number of 
iterations progresses in the GSAA. The graphical illustration offers key insights into the 
algorithm’s convergence behavior and effectiveness. The plot indicates that the fitness function 
reaches a state of convergence around the 15th iteration. Despite the longer running time per 
iteration compared to other algorithms, the relatively large number of iterations contributes to a 
strong convergence effect. This convergence demonstrates the efficacy of the designed algorithm 
in consistently improving its solution quality over time. Additionally, Figure 11 highlights that 
the GSAA is capable of obtaining the optimal solution and the corresponding values of each 
decision variable. This capability sets it apart from other algorithms, showcasing its ability to 

Figure 11. Fitness curve of GSAA solution
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find the best possible solution for the given problem. While acknowledging that GSAA may 
have longer running times compared to alternative algorithms, it is essential to recognize that 
the primary objective is to achieve the optimal solution. The algorithm’s capacity to fulfil this 
goal underscores its effectiveness and relevance in solving complex optimization problems. By 
incorporating visualizations of the convergence process, Figure 11 effectively communicates the 
algorithm’s convergence behavior and its ability to deliver optimal solutions. The convergence 
analysis presented in the plot reinforces the algorithm’s effectiveness and emphasizes its success 
in achieving the desired outcomes through a systematic and iterative approach.

CONCLUSION

The continuous advancement of science and societal progress has brought to light critical issues 
such as resource scarcity and environmental pollution, underscoring the urgent need to address these 
challenges. Achieving sustainable development has thus emerged as a paramount goal, presenting 
significant hurdles in the process. Given that the evolution of society is deeply intertwined with 
the dynamics of the supply chain, it is evident that traditional supply chain models fall short of 
addressing the requisites for sustainable development. Our research underscores the effectiveness of 
adopting a CLSC approach to safeguard the environment while promoting economic progress and 
ensuring a sustainable coexistence between humanity and nature. Through an in-depth exploration 
of CLSC’s concept and defining features, this study introduces a management optimization 
strategy leveraging DL technology; the GSAA facilitates simulation and the derivation of optimal 
solutions. The algorithm’s favorable convergence properties not only enhance the efficiency of 
CLSC management but also pave the way for groundbreaking advancements in the operational 
strategies of Chinese enterprises.

From a practical standpoint, the implications of our research for businesses and supply chain 
management are multifaceted. Firstly, the adoption of a CLSC model represents a strategic pivot 
towards sustainability, enabling companies to minimize waste, reduce environmental impact, and 
comply with increasing regulatory demands for sustainable practices. This shift not only contributes 
to environmental conservation but also offers a competitive edge in the marketplace through improved 
brand image and customer loyalty.

Secondly, the integration of DL technology and the application of the GSAA in optimizing 
CLSC operations underscore the potential for technological innovation to revolutionize supply chain 
management. By harnessing these advanced computational tools, businesses can achieve greater 
efficiency, agility, and resilience in their supply chain operations. This optimization strategy facilitates 
more accurate forecasting, inventory management, and resource allocation, thereby enhancing overall 
operational effectiveness and reducing costs.

However, the challenge of long running times associated with the proposed method highlights 
the need for continued innovation and improvement. Future research should focus on refining these 
computational techniques to ensure that they are more accessible and practical for widespread 
implementation across various industries. By addressing these limitations, the pathway to integrating 
advanced technologies into everyday business operations becomes clearer, further unlocking the 
potential for sustainable development within the realm of supply chain management.

In conclusion, this study not only contributes to the theoretical understanding of CLSC and 
its importance in achieving sustainability but also offers practical insights for businesses aiming to 
navigate the complexities of modern supply chains. As we move forward, it is imperative for enterprises 
to embrace these innovative approaches, fostering a culture of sustainability and technological 
adaptation that will define the future of global supply chain management.
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