
xx

Preface

Software Science is a discipline that studies the theoretical framework of software as instructive and
behavioral information, which can be embodied and executed by generic computers in order to create
expected system behaviors and machine intelligence. Intelligence Science is a discipline that studies the
mechanisms and theories of abstract intelligence and its paradigms such as natural, artificial, machin-
able, and computational intelligence. The convergence of software and intelligent sciences forms the
transdisciplinary field of computational intelligence, which provides a coherent set of fundamental
theories, contemporary denotational mathematics, and engineering applications.

This book entitled Breakthroughs in Software Science and Computational Intelligence is the second
volume in the IGI Series of Advances in Software Science and Computational Intelligence. The book
encompasses 25 chapters of expert contributions selected from the International Journal of Software
Science and Computational Intelligence during 2010. The book is organized in four sections on: (1)
Computational intelligence; (2) Cognitive computing; (3) Software science; and (4) Applications in
computational intelligence and cognitive computing.

SECTION 1: COMPUTATIONAL INTELLIGENCE

Intelligence science studies theories and models of the brain at all levels, and the relationship between
the concrete physiological brain and the abstract soft mind. Intelligence science is a new frontier with the
fertilization of biology, psychology, neuroscience, cognitive science, cognitive informatics, philosophy,
information science, computer science, anthropology, and linguistics. A fundamental view developed in
software and intelligence sciences is known as abstract intelligence, which provides a unified foundation
for the studies of all forms and paradigms of intelligence such as natural, artificial, machinable, and com-
putational intelligence. Abstract Intelligence (αI) is an enquiry of both natural and artificial intelligence
at the neural, cognitive, functional, and logical levels from the bottom up. In the narrow sense, αI is a
human or a system ability that transforms information into behaviors. However, in the broad sense, αI
is any human or system ability that autonomously transfers the forms of abstract information between
data, information, knowledge, and behaviors in the brain or intelligent systems.

Computational Intelligence (CoI) is an embodying form of Abstract Intelligence (αI) that implements
intelligent mechanisms and behaviors by computational methodologies and software systems, such as
expert systems, fuzzy systems, cognitive computers, cognitive robots, software agent systems, genetic/
evolutionary systems, and autonomous learning systems. The theoretical foundations of computational
intelligence root in cognitive informatics, software science, and denotational mathematics.

 xxi

This section on computational intelligence encompasses the following five chapters:

• Chapter 1: Perspectives on Cognitive Computing and Applications
• Chapter 2: Granular Computing and Human-Centricity in Computational Intelligence
• Chapter 3: A General Knowledge Representation Model for the Acquisition of Skills and Concepts
• Chapter 4: Feature Based Rule Learner in Noisy Environment Using Neighbourhood Rough Set

Model
• Chapter 5: A High Level Model of a Conscious Embodied Agent

Chapter 1, “Perspectives on Cognitive Computing and Applications,” by Yingxu Wang, Witold Pe-
drycz, George Baciu, Ping Chen, Guoyin Wang, and Yiyu Yao, presents Cognitive Computing (CC) as an
emerging paradigm of intelligent computing theories and technologies based on cognitive informatics,
which implements computational intelligence by autonomous inferences and perceptions mimicking
the mechanisms of the brain. The development of Cognitive Computers (CogC) is centric in cognitive
computing methodologies. A CogC is an intelligent computer for knowledge processing as that of a
conventional von Neumann computer for data processing. This chapter summarizes the presentations
of a set of 6 position chapters presented in the ICCI 2010 Plenary Panel on Cognitive Computing and
Applications contributed from invited panelists who are part of the world’s renowned researchers and
scholars in the field of cognitive informatics and cognitive computing.

Chapter 2, “Granular Computing and Human-Centricity in Computational Intelligence,” by Witold
Pedrycz, presents information granules and the general framework of Granular Computing, which offers
interesting opportunities to endow processing with an important facet of human-centricity. This facet
directly implies that the underlying processing supports non-numeric data inherently associated with the
variable perception of humans and generates results being seamlessly comprehended by users. Given that
systems, which quite commonly become distributed and hierarchical, managing granular information
in hierarchical and distributed architectures, are of growing interest, especially when invoking mecha-
nisms of knowledge generation and knowledge sharing. The outstanding feature of human centricity of
Granular Computing along with essential fuzzy set-based constructs constitutes the crux of our study.
We elaborate on some new directions of knowledge elicitation and quantification realized in the setting
of fuzzy sets. With this regard, we concentrate on an idea of knowledge-based clustering, which aims
at the seamless realization of the data-expertise design of information granules. It is also emphasized
that collaboration and reconciliation of locally available knowledge give rise to the concept of higher
type information granules. The other interesting directions enhancing human centricity of computing
with fuzzy sets, deals with non-numeric, semi-qualitative characterization of information granules
(fuzzy sets), as well as inherent evolving capabilities of associated human-centric systems. We discuss
a suite of algorithms facilitating a qualitative assessment of fuzzy sets, formulate a series of associated
optimization tasks guided by well-formulated performance indexes, and discuss the underlying essence
of the resulting solutions.

Chapter 3, “A General Knowledge Representation Model for the Acquisition of Skills and Concepts,”
by Carlos Ramirez and Benjamin Valdes, presents a cognitive model for skills and concepts representa-
tion as well as a proposal for its computational implementation. The model is intended to help bridge
some of the natural problems that arise in current massive education models, through the adaptation and
personalization of learning environments. The model is capable of representing rich semantic knowl-
edge, including both skills and concepts, integrating them through a coherent network of role-based

xxii

associations. The associations build an ontology that integrates on itself different domain taxonomies
to represent the knowledge acquired by a student keeping relevant context information. The model is
based on a constructivist approach.

Chapter 4, “Feature Based Rule Learner in Noisy Environment Using Neighbourhood Rough Set
Model,” by Yang Liu, Luyang Jiao, Guohua Bai, and Boqin Feng, presents a perspective of cognitive
informatics where cognition can be viewed as the acquisition of knowledge. In real-world applications,
information systems usually contain some degree of noisy data. A new model, which combines the
neighbourhood approximation and variable precision rough set model, is proposed to deal with hybrid-
feature selection problem. Then rule induction algorithm can learn from selected features in order to
reduce the complexity of rule sets. Through proposed integration, the knowledge acquisition process
becomes insensitive to the dimensionality of data with a pre-defined tolerance degree of noise and un-
certainty for misclassification. When we apply the method to a Chinese diabetic diagnosis problem, the
hybrid-attribute reduction method selected only five attributes from totally thirty-four measurements.
Rule learner produced eight rules with average two attributes in the left part of an IF-THEN rule form,
which is a manageable set of rules. The demonstrated experiment shows that the present approach is
effective in handling real-world problems.

Chapter 5, “A High Level Model of a Conscious Embodied Agent,” by Jirí Wiedermann, presents
a schematic yet cognitively powerful architecture of an embodied conscious agent. The architecture
incorporates a mechanism for mining, representing, processing, and exploiting semantic knowledge.
This mechanism is based on two complementary internal world models, which are built automatically.
One model (based on artificial mirror neurons) is used for mining and capturing the syntax of the rec-
ognized part of the environment, while the second one (based on neural nets) is used for its semantics.
Jointly, the models support algorithmic processes underlying phenomena similar in important aspects to
higher cognitive functions such as imitation learning and the development of communication, language,
thinking and consciousness.

SECTION 2: COGNITIVE COMPUTING

Computing systems and technologies can be classified into the categories of imperative, autonomic,
and cognitive computing from the bottom up. The imperative computers are a passive system based on
stored-program controlled mechanisms for data processing. The autonomic computers are goal-driven
and self-decision-driven machines that do not rely on instructive and procedural information. Cogni-
tive computers are more intelligent computers beyond the imperative and autonomic computers, which
embody major natural intelligence behaviors of the brain such as thinking, inference, and learning. The
increasing demand for non von Neumann computers for knowledge and intelligence processing in the
high-tech industry and everyday lives require novel cognitive computers for providing autonomous
computing power for various cognitive systems mimicking the natural intelligence of the brain.

Cognitive Computing (CC) is a novel paradigm of intelligent computing methodologies and systems
based on Cognitive Informatics (CI), which implements computational intelligence by autonomous in-
ferences and perceptions mimicking the mechanisms of the brain. CC emerged and developed based on
transdisciplinary research in cognitive informatics, abstract intelligence, and Denotational Mathematics
(DM). The latest advances in CI, CC, and DM enable a systematic solution for the future generation of
intelligent computers known as Cognitive Computers (CogCs) that think, perceive, learn, and reason. A

 xxiii

CogC is an intelligent computer for knowledge processing just as a conventional von Neumann computer
is for data processing. CogCs are designed to embody machinable intelligence such as computational
inferences, causal analyses, knowledge manipulations, machine learning, and autonomous problem solving.

This section on cognitive computing encompasses the following six chapters:
 ◦ Chapter 6: Cognitive Memory: Human-Like Memory
 ◦ Chapter 7: Multi-Fractal Analysis for Feature Extraction from DNA Sequences
 ◦ Chapter 8: Agent-Based Middleware for Advanced Communication Services in a Ubiquitous

Computing Environment
 ◦ Chapter 9: Relevant and Non-Redundant Amino Acid Sequence Selection for Protein

Functional Site Identification
 ◦ Chapter 10: Role-Based Autonomic Systems
 ◦ Chapter 11: Combining Ontology with Intelligent Agent to Provide Negotiation Service

Chapter 6, “Cognitive Memory: Human-Like Memory,” by Bernard Carlos Widrow and Juan Aragon,
presents a new form of computer memory inspired from life experience. Certain conjectures about human
memory are keys to the central idea. We present the design of a practical and useful “cognitive” memory
system. The new memory does not function like a computer memory where specific data is stored in
specific numbered registers and retrieval is done by reading the contents of the specified memory regis-
ter, or done by matching key words as with a document search. Incoming sensory data would be stored
at the next available empty memory location, and indeed could be stored redundantly at several empty
locations. The stored sensory data would neither have key words nor would it be located in known or
specified memory locations. Retrieval would be initiated by a prompt signal from a current set of sensory
inputs or patterns. The search would be done by a retrieval system that makes use of auto-associative
artificial neural networks. In this chapter we present a practical application of this cognitive memory
system to human facial recognition.

Chapter 7, “Multi-Fractal Analysis for Feature Extraction from DNA Sequences,” by Witold Kinsner
and Hong Zhang, presents estimations of multiscale (multifractal) measures for feature extraction from
Deoxyribonucleic Acid (DNA) sequences, and demonstrates the intriguing possibility of identifying
biological functionality using information contained within the DNA sequence. We have developed a
technique that seeks patterns or correlations in the DNA sequence at a higher level than the local base-
pair structure. The technique has three main steps: (1) transforms the DNA sequence symbols into a
modified Lévy walk, (2) transforms the Lévy walk into a signal spectrum, and (3) breaks the spectrum
into subspectra and treats each of these as an attractor from which the multifractal dimension spectrum
is estimated. An optimal minimum window size and volume element size are found for estimation of the
multifractal measures. Experimental results show that DNA is multifractal, and that the multifractality
changes depending upon the location (coding or noncoding region) in the sequence.

Chapter 8, “Agent-Based Middleware for Advanced Communication Services in a Ubiquitous Comput-
ing Environment,” by Takuo Suganuma, Hideyuki Takahashi, and Norio Shiratori, presents a ubiquitous
computing (ubicomp) environment where system components of different types including hardware
elements, software components, and network connections must cooperate mutually to provide services
that fulfill user requirements. Consequently, advanced and flexible characteristics of software that are
specialized for a ubicomp environment are needed. This chapter presents a proposal of an agent-based
middleware for a ubicomp environment comprising computers and home electric appliances. The middle-

xxiv

ware, called AMUSE, can take quality of service (QoS) in a ubicomp environment into consideration
by coping not only with user context but also with the resource context, using agent-based computing
technology. Herein, we describe the concept, design, and initial implementation of AMUSE. Simula-
tion results of an experimental ubiquitous service using AMUSE demonstrate the effectiveness of our
proposed scheme. Additionally, to confirm our scheme’s feasibility and effectiveness, we describe the
initial implementation of a multimedia communication application based on AMUSE.

Chapter 9, “Relevant and Non-Redundant Amino Acid Sequence Selection for Protein Functional Site
Identification,” by Chandra Das and Pradipta Maji, presents a pattern recognition algorithm to predict
functional sites in proteins where amino acids cannot be used directly as inputs since they are nonnu-
merical variables. They, therefore, need encoding prior to input. In this regard, the bio-basis function
maps a nonnumerical sequence space to a numerical feature space. It is designed using an amino acid
mutation matrix. One of the important issues for the bio-basis function is how to select a minimum set
of bio-basis strings with maximum information. In this chapter, an efficient method to select bio-basis
strings for the bio-basis function is described integrating the concepts of the Fisher ratio and “degree of
resemblance.” The integration enables the method to select a minimum set of most informative bio-basis
strings. The concept of asymmetric biological distance is introduced to compute the Fisher ratio, which
is more effective for selection of most relevant bio-basis strings. The “degree of resemblance” enables
efficient selection of a set of distinct bio-basis strings. In effect, it reduces the redundant features in
numerical feature space. Some quantitative indices are proposed for evaluating the quality of selected
bio-basis strings. The effectiveness of the proposed bio-basis string selection method, along with a
comparison with existing methods, is demonstrated on different data sets.

Chapter 10, “Role-Based Autonomic Systems,” by Haibin Zhu, presents autonomic computing as
an emerging computing paradigm in order to create computer systems capable of self-management and
overcome the rapidly growing complexity of computing systems management. To possess self-* prop-
erties, there must be mechanisms to support self-awareness, i.e., an autonomic system should be able
to perceive the abnormality of its components. After abnormality is checked, processes of self-healing,
self-configuration, self-optimization, and self-protection must be completed to guarantee the system
works correctly and continuously. In Role-Based Collaboration (RBC), roles are the major media for
interaction, coordination, and collaboration. A role can be used to check if a player behaves well or
not. This chapter investigates the possibility of using roles and their related mechanisms to diagnose
the behavior of agents, and facilitate self-* properties of a system. The chapter asserts that role-based
systems are autonomic.

Chapter 11, “Combining Ontology with Intelligent Agent to Provide Negotiation Service,” by Qiumei
Pu, Yongcun Cao, Xiuqin Pan, Siyao Fu, and Zengguang Hou, presents agent and ontology as distinct
technologies which arose independent of each other, having their own standards and specifications.
At the same time, the semantics Web is one of the popular research areas these days. It is based on the
current Web, and adds more semantics to it, for the purpose of building the Ontology of Web content.
So, application programs on the Web can make the purpose of cross-platform calculation come true
by taking advantage of Ontology. On the other side of the coin, agent is a theory able to enhance the
abstraction of software itself. Negotiation protocol is the basic principle in the electronic commerce,
this principle has a direct impact on the efficiency of the negotiation. This study brings up the commu-
nication architecture with negotiation protocol on the Semantic Web. Precisely speaking, agents make
computing with Ontology, and we define an agent’s communication ontology for this communication
framework. Semantic Web uses Ontology to describe the negotiation protocol, which will enable an

 xxv

agent to gain the necessary knowledge from the market. This will give agents the ability to understand
each other enough to carry out their objectives. In this way, buyer or seller is able to improve semantic
cognitive in the process of negotiation. At the same time, it can provide an intelligent platform for the
information exchange on the same understanding about the content of communication in the electronic
negotiation service.

SECTION 3: SOFTWARE SCIENCE

Software as instructive behavioral information has been recognized as an entire range of widely and
frequently used objects and phenomena in human knowledge. Software science is a theoretical inquiry
of software and its constraints on the basis of empirical studies on engineering methodologies and tech-
niques for software development and software engineering organization. In the history of science and
engineering, a matured discipline always gave birth to new disciplines. For instance, theoretical physics
was emerged from general and applied physics, and theoretical computing was emerged from computer
engineering. So does software science that emerges from and grows in the fields of software, computer,
information, knowledge, and system engineering.

Software Science (SS) is a discipline of enquiries that studies the theoretical framework of software
as instructive and behavioral information, which can be embodied and executed by generic computers
in order to create expected system behaviors and machine intelligence. The discipline of software sci-
ence studies the common objects in the abstract world such as software, information, data, concepts,
knowledge, instructions, executable behaviors, and their processing by natural and artificial intelligence.
From this view, software science is theoretical software engineering; while software engineering is ap-
plied software science in order to efficiently, economically, and reliably develop large-scale software
systems. The phenomena shows that almost all the fundamental problems, which could not be solved in
the last four decades in software engineering, simply stemmed from the lack of coherent theories in the
form of software science. The vast cumulated empirical knowledge and industrial practice in software
engineering have made this possible to enable the emergence of software science.

This section on software science encompasses the following six chapters:
 ◦ Chapter 12: Design and Implementation of an Autonomic Code Generator Based on RTPA
 ◦ Chapter 13: The Formal Design Model of a Real-Time Operating System (RTOS+):

Conceptual and Architectural Frameworks
 ◦ Chapter 14: The Formal Design Model of a Real-Time Operating System (RTOS+): Static

and Dynamic Behaviors
 ◦ Chapter 15: The Formal Design Model of an Automatic Teller Machine (ATM)
 ◦ Chapter 16: The Formal Design Models of a Set of Abstract Data Types (ADTs)
 ◦ Chapter 17: A Least-Laxity-First Scheduling Algorithm of Variable Time Slice for Periodic

Tasks

Chapter 12, “Design and Implementation of an Autonomic Code Generator Based on RTPA,” by
Yingxu Wang, Xinming Tan, and Cyprian F. Ngolah, presents a denotational mathematics, Real-Time
Process Algebra (RTPA), for the algebraic modeling and manipulations of software system architectures
and behaviors by the Unified Data Models (UDMs) and Unified Process Models (UPMs). On the basis

xxvi

of the RTPA specification and refinement methodologies, automatic software code generation is enabled
toward improving software development productivity. This chapter presents the work on designing and
developing the RTPA-Based Software Code Generator (RTPA-CG) that transfers system models in
RTPA architectures and behaviors into C++ or Java. A two-phrase strategy has been employed in the
design of the code generator. The first phrase analyzes the lexical, syntactical, and type specifications
of a software system modeled in RTPA, which results in a set of Abstract Syntax Trees (ASTs). The
second phrase translates the ASTs into C++ or Java based on predesigned mapping strategies and code
generation rules. The toolkit of RTPA code generator encompasses an RTPA lexer, parser, type-checker,
and a code builder. Experimental results show that system models in RTPA can be rigorously processed
and corresponding C++/Java code can be automatically generated using the toolkit. The code generated
is executable and effective under the support of an RTPA run-time library.

Chapter 13, “The Formal Design Model of a Real-Time Operating System (RTOS+): Conceptual and
Architectural Frameworks,” by Yingxu Wang, Cyprian F. Ngolah, Guangping Zeng, Philip C. Y. Sheu,
C. Philip Choy, and Yousheng Tian, presents a Real-Time Operating System (RTOS+) as platform for
the design and implementation of a wide range of applications in real-time systems, embedded systems,
and mission-critical systems. This chapter describes a formal design model for a general RTOS known
as RTOS+ that enables a specific target RTOS to be rigorously and efficiently derived in real-world
applications. The methodology of a denotational mathematics, Real-Time Process Algebra (RTPA), is
described for formally modeling and refining architectures, static behaviors, and dynamic behaviors of
RTOS+. The conceptual model of the RTOS+ system is introduced as the initial requirements for the
system. The architectural model of RTOS+ is created using RTPA architectural modeling methodologies
and refined by a set of Unified Data Models (UDMs). The static behaviors of RTOS+ are specified and
refined by a set of Unified Process Models (UPMs). The dynamic behaviors of the RTOS+ system are
specified and refined by the real-time process scheduler and system dispatcher. This work is presented in
two chapters in serial due to its excessive length. The conceptual and architectural models of RTOS+ is
described in this chapter; while the static and dynamic behavioral models of RTOS+ will be elaborated
in Chapter 14.

Chapter 14, “The Formal Design Model of a Real-Time Operating System (RTOS+): Static and Dy-
namic Behaviors,” by Yingxu Wang, Guangping Zeng, Cyprian F. Ngolah, Philip C. Y. Sheu, C. Philip
Choy, and Yousheng Tian, presents a Real-Time Operating System (RTOS+), which is the second part of
the work succeeding Chapter 13. In this chapter, the static behaviors of RTOS+ are specified and refined
by a set of Unified Process Models (UPMs). The dynamic behaviors of the RTOS+ system are specified
and refined by the real-time process scheduler and system dispatcher. RTOS+ provides a platform for
the design and implementation of a wide range of applications in real-time systems, embedded systems,
and mission-critical systems.

Chapter 15, “The Formal Design Model of an Automatic Teller Machine (ATM),” by Yingxu Wang,
Yanan Zhang, Philip C. Y. Sheu, Xuhui Li, and Hong Guo, presents an Automated Teller Machine (ATM)
as a safety-critical and real-time system that is highly complicated in design and implementation. This
chapter presents the formal design, specification, and modeling of the ATM system using a denotational
mathematics known as Real-Time Process Algebra (RTPA). The conceptual model of the ATM system
is introduced as the initial requirements for the system. The architectural model of the ATM system is
created using RTPA architectural modeling methodologies and refined by a set of Unified Data Models
(UDMs), which share a generic mathematical model of tuples. The static behaviors of the ATM system
are specified and refined by a set of Unified Process Models (UPMs) for the ATM transition processing

 xxvii

and system supporting processes. The dynamic behaviors of the ATM system are specified and refined
by process priority allocation, process deployment, and process dispatch models. Based on the formal
design models of the ATM system, code can be automatically generated using the RTPA Code Generator
(RTPA-CG), or be seamlessly transformed into programs by programmers. The formal models of ATM
may not only serve as a formal design paradigm of real-time software systems, but also a test bench
for the expressive power and modeling capability of exiting formal methods in software engineering.

Chapter 16, “The Formal Design Models of a Set of Abstract Data Types (ADTs),” by Yingxu Wang,
Xinming Tan, Cyprian F. Ngolah, and Philip Sheu, presents type theories as one of the fundamental theories
underpinning data object modeling and system architectural design in computing and software engineering.
Abstract Data Types (ADTs) are a set of highly generic and rigorously modeled data structures in type
theory. ADTs are not only important in type modeling, but also play a key role in Object-Oriented (OO)
technologies for software system design and implementation. This chapter presents a formal modeling
methodology for ADTs using the Real-Time Process Algebra (RTPA), which allows both architectural
and behavioral models of ADTs and complex data objects to be rigorously designed and specified in
a top-down approach. Formal architectures, static behaviors, and dynamic behaviors of a set of ADTs,
such as stack, queue, sequence, and record, are comparatively studied. The architectural models of the
ADTs are created using RTPA architectural modeling methodologies known as the Unified Data Models
(UDMs). The static behaviors of the ADTs are specified and refined by a set of Unified Process Models
(UPMs) of RTPA. The dynamic behaviors of the ADTs are modeled by process dispatching technologies
of RTPA. This work has been applied in a number of real-time and nonreal-time system designs such as
a Real-Time Operating System (RTOS+), a Cognitive Learning Engine (CLE), an ADT library for an
RTPA support tool, and the automatic code generator based on RTPA.

Chapter 17, “A Least-Laxity-First Scheduling Algorithm of Variable Time Slice for Periodic Tasks,”
by Shaohua Teng, Wei Zhang, Haibin Zhu, Xiufen Fu, Jiangyi Su, and Baoliang Cui, presents a Least-
Laxity-First (LLF) scheduling algorithm that assigns a priority to a task according to its executing urgency.
The smaller the laxity value of a task is, the sooner it needs to be executed. When two or more tasks
have the same or approximative laxity values, the LLF scheduling algorithm leads to frequent switches
among tasks, causes extra overhead in a system, and therefore, restricts its application. The least switch
and laxity first scheduling algorithm is proposed in the chapter by searching out an appropriate common
divisor in order to improve the LLF algorithm for periodic tasks.

SECTION 4: APPLICATIONS OF COMPUTATIONAL
INTELLIGENCE AND COGNITIVE COMPUTING

A series of fundamental breakthroughs have been recognized and a wide range of applications has been
developed in software science, abstract intelligence, cognitive computing, and computational intelli-
gence in the last decade. Because software science and computational intelligence provide a common
and general platform for the next generation of cognitive computing, some expected innovations in
these fields will emerge such as cognitive computers, cognitive knowledge representation technolo-
gies, semantic searching engines, cognitive learning engines, cognitive Internet, cognitive robots, and
autonomous inference machines for complex and long-series inferences, problem solving, and decision
making beyond traditional logic- and rule-based technologies.

xxviii

This section on applications of computational intelligence and cognitive computing encompasses the
following eight chapters:
 ◦ Chapter 18: Cognitive Location-Aware Information Retrieval by Agent-Based Semantic

Matching
 ◦ Chapter 19: Perceiving the Social: A Multi-Agent System to Support Human Navigation in

Foreign Communities
 ◦ Chapter 20: Symbiotic Aspects in e-Government Application Development
 ◦ Chapter 21: CoPBoard: A Catalyst for Distributed Communities of Practice
 ◦ Chapter 22: Remote Conversation Support for People with Aphasia
 ◦ Chapter 23: Estimating which Object Type a Sensor Node is Attached to in Ubiquitous

Sensor Environment
 ◦ Chapter 24: Delay-Range-Dependent Robust Stability for Uncertain Stochastic Neural

Networks with Time-Varying Delays
 ◦ Chapter 25: Classifier Ensemble Based Analysis of a Genome-Wide SNP Dataset Concerning

Late-Onset Alzheimer Disease

Chapter 18, “Cognitive Location-Aware Information Retrieval by Agent-Based Semantic Match-
ing,” by Eddie C. L. Chan, George Baciu, and S. C. Mak, presents an agent system operating in both
wired and wireless networks that finds and retrieves location-aware information. Agents in the proposed
system must have the full range of abilities, including perception, use of natural language, learning,
and the ability to understand user queries. The speed and accuracy of retrieval and the usefulness of the
retrieved data depends on a number of factors including constant or frequent changes in its content or
status, the effects of environmental factors such as the weather and traffic, and the techniques that are
used to categorize the relevance of the retrieved data. This chapter proposes semantic TFIDF, an agent-
based system for retrieving location-aware information that makes use of semantic information in the
data to develop smaller training sets, thereby improving the speed of retrieval while maintaining or even
improving accuracy. This proposed method first assigns intelligent agents to gathering location-aware
data, which they then classify, match, and organize to find a best match for a user query. This is done
using semantic graphs in the WordNet English dictionary. Experiments will compare the proposed sys-
tem with three other commonly used systems and show that it is significantly faster and more accurate.

Chapter 19, “Perceiving the Social: A Multi-Agent System to Support Human Navigation in For-
eign Communities,” Victor V. Kryssanov, Shizuka Kumokawa, Igor Goncharenko, and Hitoshi Ogawa,
presents a system developed to help people explore local communities by providing navigation services
in social spaces created by the community members via communication and knowledge sharing. The
proposed system utilizes data of a community’s social network to reconstruct the social space, which
is otherwise not physically perceptible but imaginary, experiential, and yet learnable. The social space
is modeled with an agent network, where each agent stands for a member of the community and has
knowledge about expertise and personal characteristics of some other members. An agent can gather
information, using its social “connections,” to find community members most suitable to communicate
to in a specific situation defined by the system’s user. The system then deploys its multimodal interface,
which operates with 3D graphics and haptic virtual environments and “maps” the social space onto a
representation of the relevant physical space, to locate the potential interlocutors and advise the user on
an efficient communication strategy for the given community. A prototype of the system is built and used

 xxix

in an experiment. The study results are discussed in a context of related work, conclusions are drawn,
and implications for future research are formulated.

Chapter 20, “Symbiotic Aspects in e-Government Application Development,” by Claude Moulin
and Marco Luca Sbodio, presents e-Government applications where the symbiotic aspect must be taken
into account at three stages: at design time in order to integrate the end-user, at delivery time when civil
servants have to discover and interact with new services, and at run time when ambient intelligence
could help the interaction of citizens with specific services. In this chapter, we focus on the first two
steps. We show how interoperability issues must concern application designers. We also present how
semantics can help civil servants when they have to deal with e-government service frameworks. We
then describe an actual application developed during the European Terregov project where semantics is
the key point for simplifying the role of citizens when requesting for health care services.

Chapter 21, “CoPBoard: A Catalyst for Distributed Communities of Practice,” by Gilson Yukio Sato
and Jean-Paul A. Barthès, presents symbiotic computing to a proliferation of computing devices that
allow linking people, favoring the development of distributed Communities of Practice (CoPs). Their
members, being dispersed geographically, have to rely strongly on technological means to interact.
In this context, coordinating distributed CoPs is more challenging than coordinating their collocated
counterparts. Hence, the increasing role of the coordination should be supported by an adequate set of
coordination tools. In this chapter we present an approach based on multi-agent systems for coordinating
distributed CoPs. It includes analyzing the exchanges among members and translating this information
into a graphical format in order to help the coordinators to follow the evolution of the participation and
the domain of the community.

Chapter 22, “Remote Conversation Support for People with Aphasia,” by Nilar Aye, Takuro Ito, Fumio
Hattori, Kazuhiro Kuwabara, and Kiyoshi Yasuda, presents a remote conversation support system for
people with aphasia. The aim of our system is to improve the Quality of Lives (QoL) of people suffer-
ing cognitive disabilities. In this framework, a topic list is used as a conversation assistant in addition
to the video phone. The important feature is sharing the focus of attention on the topic list between a
patient and the communication partner over the network in order to facilitate distant communication.
The results of two preliminary experiments indicate the potential of the system.

Chapter 23, “Estimating which Object Type a Sensor Node is Attached to in Ubiquitous Sensor
Environment,” by Takuya Maekawa, Yutaka Yanagisawa, and Takeshi Okadome, presents a method
for inferring the type of the physical indoor objects and the states they are in with attached sensors. As-
suming that an object has its own states that have transitions represented by a state transition diagram,
we prepare the state transition diagrams in advance for such indoor objects as a door, a drawer, a chair,
and a locker. The method determines the presumed state transition diagram from prepared diagrams
that match sensor data collected from people’s daily living for a certain period of time. A two week
experiment shows that the method achieves high accuracy of inferring objects to which sensor nodes
are attached. The method makes it easy for us to introduce ubiquitous sensor environments by simply
attaching sensor nodes to physical objects around us.

Chapter 24, “Delay-Range-Dependent Robust Stability for Uncertain Stochastic Neural Networks
with Time-Varying Delays,” by Wei Feng and Haixia Wu, presents a robust stability analysis problem
for uncertain stochastic neural networks with interval time-varying delays. By utilizing a Lyapunov-
Krasovskii functional and conducting stochastic analysis, we show that the addressed neural networks
are globally, robustly, asymptotically stable if a convex optimization problem is feasible. Some stability
criteria are derived for all admissible uncertainties. And these stability criteria are formulated by means

xxx

of the feasibility of a Linear Matrix Inequality (LMI), which can be effectively solved by some standard
numerical packages. Five numerical examples are given to demonstrate the usefulness of the proposed
robust stability criteria.

Chapter 25, “Classifier Ensemble Based Analysis of a Genome-Wide SNP Dataset Concerning Late-
Onset Alzheimer Disease,” by Lúcio Coelho, Ben Goertzel, Cassio Pennachin, and Chris Heward, presents
the OpenBiomind toolkit that is used to apply GA, GP, and local search methods to analyze a large SNP
dataset concerning Late-Onset Alzheimer’s Disease (LOAD). Classification models identifying LOAD
with statistically significant accuracy are identified, and ensemble-based important features analysis is
used to identify brain genes related to LOAD, most notably the solute carrier gene SLC6A15. Ensemble
analysis is used to identify potentially significant interactions between genes in the context of LOAD.

This book is intended for researchers, engineers, graduate students, senior-level undergraduate
students, and instructors as an informative reference book in the emerging fields of software science,
cognitive intelligence, and computational intelligence. The editor expects that readers of Breakthroughs
in Software Science and Computational Intelligence will benefit from the 25 selected chapters of this
book, which represents the latest advances in research in software science and computational intelligence
and their engineering applications.

Yingxu Wang
University of Calgary, Canada

