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Preface

TOWARDS MORE EFFECTIVE METAHEURISTIC COMPUTING

1. INTRODUCTION

The engineering and business problems we face today have become more impenetrable and unstructured, 
making the design of a satisfactory algorithm nontrivial. Traditionally, researchers strive to formulate 
the problems as a mathematical model by relaxing, if necessary, hard objectives and constraints. The 
exact solution to this formulated version can be obtained through manipulations of mathematical pro-
gramming such as integer linear programming, branch-and-bound and dynamic programming. However, 
due to the enumeration nature of these methods, mathematical programming techniques are limited to 
the applications with small problem size. As an alternative, approximation solutions are targeted by 
problem-specific heuristics which analyze the properties and structures of the underlying problems and 
greedily construct a feasible solution. The quality of the generated solution varies significantly upon 
problem instances, though the greedy heuristics are usually computationally fast. It has been a dilemma 
for the choice between the mathematical programming techniques and heuristic approaches. A notion 
of levering the two solution methods has created the regime of metaheuristic which was first coined by 
Fred Glover (1986). The metaheuristic approach guides the course of a heuristic to search beyond the 
local optimality by taking full advantage of strategic level problem solving using memory manipula-
tions without a hassle to design problem-specific operations each time a new application shows up and 
still inheriting the computational efficiency from the embedded heuristic. Metaheuristic has built its 
foundations on multidiscipilary research findings ranging from phylogenetic evolution, sociocognition, 
gestalt psychology, social insects foraging, to strategic level problem solving. From a broader perspec-
tive, nature-inspired metaheuristics focusing on metaphors share its name with evolutionary algorithms, 
artificial immune systems, memetic algorithm, simulated annealing, ant colony optimization, particle 
swarm optimization, etc (Holland, 1975; Kirkpatrick et al., 1983; Dorigo, 1992; Kennedy & Eberhart, 
1995). Strategic level metaheuristics incorporate higher level problem solving mechanisms from artifi-
cial intelligence relying on rules and memory. Typical renowned methods at least include tabu search, 
scatter search, GRASP, variable neighbourhood search (Glover, 1989; Laguna & Marti, 2003; Feo & 
Resende, 1995; Mladenovic & Hansen, 1997).

With technologies and conceptions emerging over the years, the development of metaheuristic has 
come to a new era. Researchers and practitioners intend to identify the primitive components contained 
in metaheuristics and try to develop the so-called hybrid metaheuristics towards more effective meta-
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heuristic computing. In light of this, several innovations have been proposed under variable categories 
such as Matheuristic, Hyper-heuristic, and Cyber-heuristic. These methodologies do not stick to a par-
ticular metaheuristic method, instead, an abstract model is defined. A hybrid metaheuristic algorithm 
can be automatically constructed or evolved using the abstract model. These innovative ideas advance 
the research of metaheuristic computing into a new generation. Another desired result of the intensive 
research on fundamentals of metaheuristics is the provision of unified development frameworks for 
constructing various forms of metaheuristics. These frameworks are easy enough for practitioners to 
construct a main-stream metaheuristic program, and are also flexible for researchers to create a sophis-
ticated metaheuristic algorithm.

The remainder of this chapter is organized as follows. Section 2 reviews principal metaheuristics 
according to the classification of nature-inspired computation vs. strategic level problem solving. In 
Section 3 we disclose the research trend in metaheuristics hybridizations. Section 4 presents the notion 
for establishing unified development frameworks for metaheuristics. Finally, conclusions are made in 
Section 5.

2. NATURE-INSPIRED COMPUTATION VS. 
STRATEGIC LEVEL PROBLEM-SOLVING

In this section we present the most important metaheuristics according to the nature-inspired computa-
tion vs. strategic level problem solving classification.

2.1 Nature-Inspired Metaheuristics

Metaheuristic algorithms based on natural metaphors are easy to describe and likely to catch the at-
tention of wide audiences. Since the advent of evolutionary algorithms inspired by Darwinian Theory, 
the research of nature-inspired metaheuristics has grown at a fast speed with an overwhelming number 
of metaphors ranging from ants, termites, birds, fish, immune systems, bacteria, and jazz harmony, to 
most recent ones such as honey bees, fireflies, monkeys, and cuckoos. We briefly review some of the 
important ones in the following.

2.1.1 Evolutionary Algorithm

Evolutionary algorithms (EA) (Bäck, 1996) may be the earliest form of metaheuristics taking advantage 
of nature metaphors. The famous selection principle, survival of the fittest, from Darwinian Theory was 
easily introduced into computation field for evolving elite solutions of perplexing problems. The simplest 
form of EA proceeds as follows (see Figure 1). A population of random solutions is initiated as the gene 
pool. The generational cycle consisting of selection, crossover, and mutation is iterated to accomplish 
the genetic functions of selecting the fitter individuals for reproduction. Representative EAs have been 
recognized as genetic algorithm, evolutionary programming, genetic programming, and evolutionary 
strategy. A later form of EA called memetic algorithm embeds a local search procedure into the genera-
tional cycle such that the evolution is more directly guided towards fitter genes.
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2.1.2 Ant Colony Optimization

The ant colony optimization (ACO) algorithm (Dorigo, 1992) is inspired by the research on the real ant 
behavior during food foraging. Ethologists observed that ants are able to construct the shortest path from 
their colony to the feeding source through the use of pheromone trails as follows. An ant leaves some 
quantities of pheromone as it walks and marks the path by a trail of this substance. The next ant will sniff 
the pheromone laid on different paths and choose the walking direction with a probability proportional 
to the amount of pheromone on it. The ant then traverses the chosen path and leaves its own pheromone. 
This is an autocatalytic (positive feedback) process which favors the shorter path along which more ants 
have previously traversed. ACO simulates this process to solve an optimization problem as summarized 
in Figure 2 by considering a better solution as a shorter path.

2.1.3 Particle Swarm Optimization

Kennedy and Eberhart (1995) gave the first particle swarm optimization (PSO) proposal for continu-
ous function optimization. The theory on which the PSO is founded is sociocognition, which states that 
social cognition happens in the interactions among individuals in such a manner that each individual 
learns from its neighbors’ behavioral models/patterns, especially from those learning experiences that 
are rewarded. Cognition emerges from the convergence of individuals’ beliefs. PSO is also biologically 
inspired, drawing on the observation that a swarm of birds (or particles, using the terminology of PSO) 
flock synchronously, change direction suddenly, scatter and regroup iteratively, and finally perch on a 
target. Each individual particle benefits from the experience of its own and that of the other particles of 
the swarm during the foraging process. This form of social intelligence not only increases the success 
rate for food foraging but also expedites the process. The baseline PSO proceeds as follows. Given an 
optimization problem, a swarm of particles representing candidate solutions is generated at random. 
Each particle iteratively moves in the solution space by reference to best experiences. In the baseline 
PSO, a particle remembers its best position visited so far and the best position observed overall by its 
neighbors. Figure 3 summarizes the process of a baseline PSO.

Figure 1. Summary of the EA conception
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2.2 Strategic Level Problem Solving Metaheuristics

The major difference between the strategic level problem solving metaheuristics and the nature-inspired 
metaheuristics is that the former takes a higher degree of memory utilization. With varying forms of 
memory structure, purposeful strategies can be devised to enhance the balance between intensification 
and diversification types of search. In this section we introduce a prevailing set of strategic level problem 
solving metaheuristics.

2.2.1 Iterative Local Search

Iterative local search (ILS) (Tounsi & Ouis, 2008) could be the simplest strategy to target the global 
optimum in a given search space. ILS conducts a single-point (trajectory) search strategy which itera-
tively performs local search at different starting solution chosen strategically. Figure 4 summarizes the 

Figure 2. Summary of the ACO conception

Figure 3. Summary of the PSO conception
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conception of ILS. The home base keeps track of the local search region of which the local optimum 
will be sought by a local search procedure. Once the local optimum is identified, it is compared to the 
current home base in order to decide the next region of interest according to an acceptance function. The 
acceptance function can be designed in variable forms, such as: (1) always accept the local optimum 
as the new home base, (2) accept the local optimum as the new home base if it’s better than the current 
home base, and (3) conditionally accept the local optimum according to the Metropolitan criterion. The 
Restarting feature of the ILS is an important strategy that is the central idea adopted in recent strategic 
level problem solving metaheuristics.

2.2.2 Tabu Search

“Tabu” comes from Tongan, a language of Polynesia, where it indicates things that cannot be touched 
because they are sacred, and the word now means prohibition. Tabu search (TS) (Glover, 1989) forbids 
the reverse search to solutions already visited. TS starts with an initial solution configuration chosen at 
random, and then moves iteratively from one configuration to another until a given stopping criterion 
is satisfied. At each iteration, a set of candidate moves are considered and thus identify a neighborhood 
of the current configuration. When a move is taken this move is recorded in the tabu list and will not be 
reversed in next few iterations. Glover pointed out that there is no value in choosing a poor move except 
for avoiding a visited path being re-examined. Hence, all candidate moves are sorted in decreasing order 
according to the quality of their resulting solutions, and one could execute the best nontabu move or 
the best tabu move that meets the aspiration level and consider the resulting solution as the new current 
configuration. Upon termination, the best configuration visited overall is considered as the best solution. 
The conception of TS is illustrated in Figure 5.

2.2.3 Greedy Randomized Adaptive Search Procedure

Greedy randomized adaptive search procedure (GRASP) (Feo & Resende, 1995) is a restart or iterative 
search process, where each iteration consists of two phases: greedy randomized construction phase and 
local search phase (see Figure 6). The greedy randomized construction phase starts with an empty solution 
and incrementally constructs the solution by repeatedly adding an element selected from the restricted 

Figure 4. Summary of the ILS conception



xx  

candidate list (RCL) which stores the elements whose insertion would cause an increment cost under a 
quality restriction criterion α, where α = 0 corresponds to a pure greedy selection (i.e., the element with 
the minimal increment cost is always selected), and α = 1 is equivalent to a random solution construction 
(any element without destroying the solution feasibility can be selected). In the local search phase, the 
neighborhood of the solution obtained from the greedy randomized construction phase is investigated 
until a local minimum is found. The two phases are restarted repetitively until a stopping criterion is 
met. Upon termination, the best overall solution is kept as the final result.

3. METAHEURISTICS HYBRIDIZATIONS

The obvious advantage of hybridizing metaheuristics is the potential for enhancing the intensification/
diversification synergy and improving the selection for regions to be explored in the course of the 
search. Often, hybrid algorithms exhibit better performance when solving complex problems, such as 
the optimization of difficult multimodal functions. These mechanisms are mainly combinations of using 
metaheuristics, low-level heuristics, mathematical programming techniques, direct search methods, etc.

Many successful metaheuristics hybridizations have been proposed. The capability in enhancing 
exploitation search has made direct search methods as popular alternatives to be combined with meta-
heuristics. Hedar and Fukushima (2006) proposes the Directed Tabu Search (DTS) method by employing 
the Nelder & Mead Method to intensify the search in the promising areas identified by the tabu search. 
They have shown the superiority of DTS over several TS variants on a set of benchmark test functions. 
Vaz and Vicente (2007) introduces a hybridization of pattern search (another form of direct search) 
with PSO. The pattern search is used to improve the best particle in the swarm with a length-decreasing 
mesh structure.

Another viable thinking is to create a hybridization by marrying metaheuristic methods with math-
ematical programming techniques. The motivation is that metaheuristics are good at exploring large space 

Figure 5. Summary of the TS conception
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and identifying promising regions or directions where the global optimum might exist and mathematical 
programming techniques are efficient and effective in solving structured problems with small search 
regions. Plateau et al. (2002) hybridized path relinking technique with the interior point method for solv-
ing 0–1 linear programs. It is seen in Backer et al. (2000) that the constraint programming is combined 
with tabu search to tackle the vehicle routing problem. Both references indicated the significant benefit 
of this model-based metaheuristic framework.

Multiple metaheuristics can cooperatively work in a framework to create synergism. Talbi and Bach-
elet (2006) proposes the COSEARCH approach which manages the cooperation of tabu search and a 
genetic algorithm for solving large scale instances of the quadratic assignment problem (QAP). Wang 
et al. (2007) enhances the diversification capability of PSO by setting the less fit attributes contained in 
the global best solution as tabu-active and repelling the particles from the tabu area. Shen et al. (2008) 
proposes an approach called HPSOTS which enables the PSO to leap over local optima by restraining 
the particle movement based on the use of tabu conditions.

Among the many possible plans for creating hybridizations, three emerging frameworks, namely, 
Matheuristics, Hyper-heuristics, and Cyber-heuristics, have attracted a broad attention from the research 
community. We highlight the features of each framework in the following sections.

3.1 Matheuristics

From the perspective of history, there seems to be a departure between the development of mathematical 
programming and metaheuristics. At one end, mathematical programming techniques (e.g., primal and 
dual forms, Lagrangean method, branch-and-bound, dynamic programming, linear/nonlinear program-
ming, constraint programming, goal programming) can derive exact solutions of underlying problems; 
however, they are constrained to the applications that involve small or moderately sized problems. At 
the other end, metaheuristic techniques (e.g., TS, ACO, PSO, GRASP) trade the solution quality to run 

Figure 6. Summary of the GRASP conception



xxii  

time, and thus they are able to report near-optimal solutions in acceptable times. Only few literature 
references have disclosed that the knowledge from mathematical programming can be integrated into 
metaheuristics, and few attempts have been intended to incorporate metaheuristic components into 
the mathematical programming framework. However, a notion of mathematical programming aware 
metaheuristic (matheuristic) proposed recently has shown that it may be beneficial to marry the two 
paradigms. On the one hand, the derived intermediate solutions by mathematical programming tech-
niques can be used to help metaheuristics handle complex constraints and reduce the search space. On 
the other hand, the mechanism of metaheuristics, if appropriately embedded into the framework of 
mathematical programming, can expedite the process of locating promising regions (e.g., by deriving 
a better bound for cutting).

A type of matheuristic methodology is to decompose the given problem into several restricted 
subordinate problems, and to solve each subordinate problem by using a mathematical programming 
approach. This form of “meta-exact” method not only takes full advantage of mathematical program-
ming to solve the subordinate problems to optimality but also relies on the diversification capability of 
metaheuristics to well explore the large problem space. In a similar vein, the composition can be done by 
using a mathematical programming model to define the neighborhood (search corridor) of the incumbent 
solution of focus to the mastering metaheuristic algorithm. Another type of matheuristic methodology 
is to employ metaheuristic scheme as the column generation and cut generation in the branch and cut 
framework. The metaheuristic techniques are in general more efficient and effective in finding an initial 
feasible solution than classic mathematical programming approaches, thus having an opportunity to find 
a better branching variable and quality bound.

A number of successful applications for Matheuristics have been reported. Glover and Hanafi (2010) 
exploits the advantages of using metaheuristic methods as supplements to classical mixed integer program-
ming (MIP) approaches. It indicates the ways for generating inequalities in reference to target solutions 
and target objectives to supplement the basic functions of metaheuristic methods as evidenced by the 
experience of applying classical MIP approaches. It also focuses on supplementary linear programming 
model embedding these inequalities in special intensification and diversification processes and proposes 
more advanced approaches for generating the target objectives. Plateau et al. (2002) hybridized interior 
point processes and metaheuristics for solving 0–1 linear programs. The interior points generated are 
combined by a path relinking template. Computational experiments are reported on 0–1 multiconstraint 
knapsack problems. Backer et al. (2000) combines constraint programming with several meta-heuristics 
ranging from a simple tabu search to guided local search and applies the technique to vehicle routing 
problems. The experimental result manifests significant benefit. Mostaghim et al. (2006) combines linear 
programming technique with PSO to solve continuous optimization with linear constraints. They first 
compute the basic feasible solutions through linear programming and use these solutions as the initial 
swarm of particles. A random set of feasible solutions (particles) are used to update the particles so that 
they never get infeasible. Talbi (2002) proposes a taxonomy of hybrid metaheuristics which also claims 
an emerging trend in developing a generic hybrid that combines exact algorithms with metaheuristics. 
Croce et al. (2011) presents a matheuristic procedure based on integer programming formulation to deal 
with the total completion time 2-machines flow shop problem. Puchinger and Raidl (2005) compiles a 
comprehensive survey discussing different state-of-the-art approaches of combining mathematical pro-
gramming techniques and metaheuristics to solve combinatorial optimization problems. It introduced 
several works disclosing the usefulness and strong potential of the research direction of matheuristics.
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3.2 Hyper-Heuristic

Denzinger et al. first coined the term Hyper-heuristic in 1997. Hyper-heuristic is an abstract model that 
describes how to select, combine, or generate more primitive heuristics to create an effective solution 
method for the given type of problems (Cowling et al., 2001; Burke et al., 2003; Özcan et al., 2008). 
It is thus representing a class of algorithms instead of a single one. The abstract model will generate 
a metaheuristic that is able to adapt to the characteristics of the given problem class. In conception, a 
set of feasible heuristics (constructive or perturbative) are identified and implemented. Then a learning 
engine would repeatedly generate higher-level heuristics by selecting or combining the primitive ones. 
Each produced higher-level heuristic is evaluated by performing to solve a training class of problems. 
The performance evaluation is then used to update the selection or combination probabilities. As a re-
sult, Hyper-heuristic can be thought of a heuristic for choosing heuristics, and it works in the heuristics 
space as a contrary to metaheuristic which usually works in the solution space of the problem at hand.

Hyper-heuristic can be performed in either macro-level or micro-level. The macro-level Hyper-
heuristic automatically selects or combines known heuristics that were already designed for solving 
the given class of problems, while the micro-level Hyper-heuristic generates a generic new heuristic by 
working on the space of primitive components of known heuristics. The Hyper-heuristic model can be 
implemented using machine learning approaches (e.g., C4.5 and reinforcement learning) or evolution-
ary computation techniques (e.g., genetic programming and tabu search). It is not necessary to know 
intensive knowledge about the problem domain for constructing a Hyper-heuristic because the domain 
knowledge is encapsulated in the selected or combined heuristics.

Figure 7 shows an abstract model using Hyper-heuristic. The process repeatedly selects a pre-imple-
mented heuristic element Ei according to an estimate of probability p s Ei i= ϑ( , )  for performing element 
Ei at a given state s. The state is then changed to a new state by ′ =s s Eiδ( , )  as a consequence of the 
performed heuristics. The selection of the element can be practiced in various ways. The first-best scheme 
chooses the first element that leads to an improvement on the value of the estimate of merit. The overall-
best scheme selects the element that gives the best value of the estimate of merit. Probability scheme 
associates each element with a selection probability based on the estimate of merit. Random scheme 
simply chooses an arbitrary element without biased probability. The hybrid scheme combines multiple 
alternatives above noted.

We have observed a number of successful applications for Hyper-heuristic. Cano-Belmán et al. (2010) 
proposes a scatter search based hyper-heuristic for addressing an assembly-line sequencing problem 
with work overload minimization. In the low-level, the procedure makes use of priority rules through a 
constructive procedure. In the strategic-level, the scatter search is used to select most suitable low-
level heuristics to construct a new heuristics. Experimental results show that the proposed hyper-heu-
ristics overcomes existing heuristics. Ouelhadj and Petrovic (2010) investigates the cooperation between 
low-level heuristics within a hyper-heuristic framework. Low-level heuristics perform local search 
through the same solution space, and the cooperative hyper-heuristic makes use of a pool of the solutions 
of the low-level heuristics for the overall selection of the low-level heuristics and the exchange of solu-
tions. The experiment results show that the cooperative hyper-heuristics outperforms sequential hyper-
heuristics. Burke et al. (2003) evaluates a hyper-heuristic approach on various instances of two distinct 
timetabling and rostering problems. The strategic-level hyper-heuristics selects low-level heuristics 
based on the reinforcement learning framework. A tabu list of heuristics is also maintained which pre-
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vents certain heuristics from being chosen at certain times during the search. The proposed hyper-
heuristics is capable of producing solutions that are competitive with those obtained using state-of-the-
art problem-specific techniques. Özcan et al. (2010) proposes a hyper-heuristic framework which 
combines successive stages of heuristic selection and move acceptance. The heuristic selection is auto-
matically controlled by the reinforcement learning technique, while the great deluge is employed to 
implement the acceptance function of the solution move.

3.3 Cyber-Heuristic

Before the mid-1990 most nature-inspired metaheuristics made use of metaphors for combining solu-
tions. But today there is a major emphasis to generate new solutions using high-level problem-solving 
strategies. These strategies may involve complex neighborhood concepts, memory structure, and adap-
tive search prinicples, mainly drawn from the field of Tabu Search. The reason for this paradigm shift 
is that although natural metaphors are useful to describe the rationale of solution reproduction, it may 
create a biased perspective about preferred forms of methods and also cause valuable alternative strate-
gies to be overlooked.

The aim of developing Cyber-heuristic algorithms is to marry strategic-level problem solving me-
taheuristic approaches with nature-inspired metaheuristics to create additional benefits that cannot be 
obtained using either one of them alone. The adjective “Cyber” emphasizes the connection between the 
nature-inspired metaheuristics and the intelligent learning provided by the Scatter Search /Path Relink-
ing (SS/PR) components, which in turn draw upon the adaptive memory programming suite. Following 
this vein, a number of metaheuristics hybridizations can be developed such as Cyber-EA, Cyber-ACO, 
Cyber-PSO, etc.

Omran (2011) edited a special issue on Scatter Search and Path Relinking methods which addresses 
the contributions of SS/PR components for swarm methods. The contrasting features of the two parties 

Figure 7. An abstract model of Hyper-heuristic
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are that SS/PR utilizes systematic solution construction rather than using randomization, and that SS/
PR employs adaptive memory strategies to select influencial solutions instead of drawing metaphors 
from nature. This difference creates a potential to marry them together and achieve synergism. Several 
successful hybridizations of SS/PR and swarm methods were proposed in this special issue, searving a 
good reference for further extensions.

Yin et al. (2010) introduces the Cyber Swarm Algorithm which gives more substance to the PSO 
metaphors by adapting them to refer to social interactions among humans as well as interactions among 
lower organisms. The conception of the Cyber Swarm Algorithm is summarized as follows. In this al-
gorithm, the social learning of a particle is not restricted to the interaction with the previous best of its 
neighbors but instead, the learning is involved with members from a dynamically maintained reference 
set, a notion from Scatter Search, containing the best solutions found overall in history by reference to 
quality and diversity. The use of dynamic social network can provide more fertile information in guidance 
than the static social network. Path relinking diversification strategies are introduced to locate quality 
solutions that are diverse in various ways from those seen in the normal search course.

4. UNIFIED DEVELOPMENT FRAMEWORK

As most metaheuristics and their hybrids are described by an abstract model, it would be beneficial 
to create a metaheuristics development framework to assist researchers and practitioners to develop a 
metaheuristic algorithm customized to their underlying problems. We observed a number of program 
callable libraries provided by relevant research centers and institutes. Primitive functions and opera-
tors for varying metaheuristics were implemented and the users only need to define their problem and 
construct the desired solution method.

Among others, GAlib (Wall, 1996) is a framework for developing genetic algorithms. MAFRA 
(Krasnogor & Smith, 2000) allows the users to insert a local search procedure into an evolutionary algo-
rithm, resulting in a memetic algorithm. Hotframe (Fink, Voss, & Woodruff, 1999) is for implementing 
trajectory-based (single solution) evolutionary algorithms. iOpt (Voudouris et al. 2001) is a framework 
for genetic algorithm and extended hybrid approaches. CIlib (Cloete, Engelbrecht, & Pampar, 2008) 
is a callable library for constructing many swarm-based and evolutionary algorithms. Particle Swarm 
Center (http://www.particleswarm.info/Programs.html) contains a number of useful sources for obtaining 
variable versions of Particle Swarm Optimization. MetaYourHeuristic (http://intelligence.im.ncnu.edu.
tw) can facilitate flexible course of metaheuristic construction, including GA, ACO, PSO, SA, TS, SS, 
GRASP, and Hyper-heuristics. ParadiseEO (http://paradiseo.gforge.inria.fr) can handle multiobjective 
optimization problems and KanGAL (http://www.iitk.ac.in/kangal/codes.shtml) provides source codes 
for single and multiobjective GAs.

Yaghini et al. (2010) proposed a framework called DIMMA for standardizing the design, implementa-
tion, and evaluation of variable metaheuristic algorithms. From the perspective of software engineering, 
DIMMA divides the time axis of metaheuristics development into three phases, initialization, blueprint, 
and construction. Each phase requires various domains of disciplines, such as problem definition, heuristic 
strategies and components, parameter optimization, performance testing metrics, etc.

A general conceptual diagram for a unified development framework of metaheuristic algorithms 
can be depicted in Figure 8. There are four main components constituting this flexible framework. The 
problem characterization component allows the user to describe the addressed problem in a documentary 
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and then to define the problem according to a formal definition language such as AMPL and GAMS. 
This could be nontrivial because the addressed problem may have more than one possible formulation 
and the merit of each formulation should be evaluated with the used (meta)heuristic method and the 
employed solution configuration, and one needs to conduct a design of experiment (DOE) approach in 
order to seek a good combination.

The callable library component contains computation procedures and operations that are frequently 
used in variable mathematical programming techniques and (meta)heuristic methods. Useful mathemat-
ical programming techniques include linear programming, branch and bound, dynamic programming, 
constraint programming, and the like. The common core procedures and operations used in many (meta)
heuristics involve initialization heuristics, neighborhood search heuristics, solution selection, informa-
tion sharing, solution combination, solution improvement, adaptive memory strategy, constraint handling, 
diversity control, among others. Moreover, the solution configuration representation is another matter 
of concern. The formulated problem is not restricted to a fixed solution configuration. The solution may 
appear in a form of array, tree, path, or any particular graph. Different solution configurations would 
affect the selection of applied (meta)heuristics.

The interface component plays a central role in this development framework. First, it separates the 
framework into three levels, namely, the problem abstract level, solution operation level, and system 
performance level. Each level is transparent to the others. In other words, the modification of codes in 
any level would not affect those in the rest of the framework. Second, the interface component encapsu-

Figure 8. Unified development framework of metaheuristic algorithms
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lates high-level problem solving strategies which purposefully organize the procedures and operations 
called from the library. For instance, a Metaheuristic strategy will require the user to specify the values 
of appropriate parameters for calling the procedures and operations of the indicated method (GA, SA, 
TS, SS, etc.) A Matheuristic strategy may activate a problem decomposition technique and calls the 
linear programming procedure to solve the subordinate problem. Hyper-heuristic strategy usually needs 
to specify a heuristic selection method and a function to decide whether to accept the selected heuristic. 
The heuristic selection method ranges from random selection, performance proportional, rank truncation, 
to any metaheuristics and machine learning techniques. The criteria used by the acceptance function 
include accept all, accept on solution improvement, accept on Metropolitan criterion, to name a few. The 
Cyber-heuristic strategy should indicate the nature-inspired metaheuristic method as the inhabited and 
the embedding search strategies introduced in the Scatter Search and Path Relinking (SS/PR) template. 
Third, the interface component deals with the mapping between solution feasibility and operation ap-
plicability. As previously mentioned, there may exist more than one solution configuration form for a 
given problem formulation. Some configurations may be easier to handle the solution constraints and 
in essence reduce the search space. The low-level heuristic operations are usually dependent on the 
problem constraints and the solution configurations. The applicability of various heuristics should be 
taken into account in anticipation of the interface mapping selection. Another issue is the selection for 
primitive or compound operations for construction and perturbation of the solution at hand. There is yet 
no theoretic or empirical proof showing that either the compound operations are favorable or individual 
primitive operations are prevailing. Further, there could exist some correlations between the operations 
employed in the same framework. Some operations may be preferably performed in a sequence, but some 
operations could deteriorate the performance if they are bound in the same method. The optimization 
problems having similar properties in the objectives, variables, and constraints may benefit from similar 
patterns in adopting the heuristic operations. Finally, all viable interface mappings are evaluated using 
the DOE approach and the one with the best performance is realized.

The evaluations and analyses component provides a systematic way of deciding the final appropri-
ate form of the established metaheuristic algorithm. One should evaluate and analyze the strengths 
and weaknesses of each mapping between interested problem formulations, solution configurations, 
and applied heuristics. For a tentative mapping, a sequence of experiments is advised. The parameter 
optimization experiment evaluates the mapping on an orthogonal set of parameter value combinations 
and analyzes the result with appropriate statistical tests. To obtain good generalization of the developed 
metaheuristic algorithm, a representative set of problem instances should be prepared and experimented 
with. The performance evaluation experiment then proceeds with the best parameter values identified 
in the previous phase and is conducted with a suite of performance metrics such as effectiveness, ef-
ficiency, convergence, and worst-case analyses. The effectiveness evaluation asserts the quality of the 
objective value obtained by the applied metaheuristics. One can compare the objective value obtained by 
competing metaheuristics given the same stopping criterion. Another popular measure for effectiveness 
is, the number of times a compared metaheuristic algorithm can produce a solution satisfying a target 
level. The efficiency analysis measures the computational time consumed by the metaheuristics to reach 
the target objective value. Since metaheuristics usually involve randomization, some statistics (mean, 
standard deviation, minimum, maximum, median) on the computational times across a larger number of 
repetitive nuns are favorable. The convergence of the tested metaheuristic algorithm can be analyzed by 
measuring the information gain during successions of iterations. As the number of iterations increases, 
the metaheuristic algorithm collects more information through exploration of the solution space and 



xxviii  

gradually resorts to some promising regions. The information entropy or variation metrics are suitable 
for analyzing the convergence. To provide a good Quality of Service (QoS), it is crucial to analyze the 
worst optimal performance we can obtain using the applied metaheuristics with various numbers of 
repetitive runs. As such different levels of quality guarantee can be facilitated.

More advanced schemes for selecting the appropriate mapping can be implemented based on self-
adaption or meta-evolution. The space of variable mappings is explored using machine learning techniques 
or metaheuristic computing methods, while for each tentative mapping the principles of the implied 
method are used to guide the search for optimal solutions.

5. CONCLUSION

Many real-world problems are unstructured or semi-structured, making the design of a satisfactory algorithm 
nontrivial. Metaheuristic algorithms have emerged as viable solution methods for solving the problems 
to which the traditional mathematical programming and heuristics are ill-suited. The metaheuristic ap-
proach guides the course of a heuristics to search beyond the local optimality by taking full advantage 
of nature metaphores or problem-solving strategies. With our recent survey on metaheuristic algorithms, 
this chapter discloses two research trends that might make metaheuristics more effective. The first trend 
constitutes various proposals of metaheurisitcs hybridizations. Matheuristics, hyper-heuristics, and cyber-
heuristics are notable among others. The second trend is the birth of many metaheuristics development 
frameworks. We present a unified development framework as a general conception for varying models. 
It would be beneficial for both practitioners and researchers to develop their metaheuristic algorithms 
by reference to this unified development model such that many possible plans for formulating problem, 
selecting search strategy, and performance evaluation can be systematically explored. The chapter has 
shown the great potentials of metaheuristic computing and invited more fruitful strategies from other 
domains to be injected into this ever exciting field.

Peng-Yeng Yin 
National Chi Nan University
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