
Preface

vii

Software engineering is a term that has a very broad definition. This process
includes the logical design of a system; the development of prototypes, the auto-
mated generation of computer code for the system; the testing, validation and
benchmarking of the code and the final implementation of the system. Once a new
system is up and running, the software engineering process is used to maintain the
system, evaluate its operation, keep track of new versions and refactor and/or reuse
the code for other projects.

Over the past 30 years the discipline of software engineering has grown. In
some cases, a specific programming paradigm, such as object-oriented, evolved into
a broad discipline encompassing design and programming processes, tools and tech-
niques. Several universities offer degrees as well as courses in software engineer-
ing. Standards for software engineering have been incorporated and formalized in
England, Canada, Australia and the United States. Additionally, software engineer-
ing has received recognition from licensing and standards boards such as the Asso-
ciation of Computing Machinery (ACM) Institute of Electrical Engineering (IEEE),
ISO 9000 and the Institute for Certification of Computing Professionals (ICCP).

Although many current design practices are focused on object-oriented tech-
niques, this does not limit us to using object-oriented languages. It is quite possible to
adopt the methods whether one writes in Fortran, C++ or writes scripts in Perl. In
recent times the concept of software engineering has expanded to include not only
code generation and system design, but a set of standards and methods that the
software engineer should practice.

The practice of software engineering rightfully begins in the requirements phase
of any system project, where the problem to be solved is well defined. Once this is
captured, the design phase starts. In an effort to avoid the problem of “reinventing
the wheel” a good designer decides what methods and patterns can be drawn from
the existing software engineering “body of knowledge.” Reusable generic design
and code is only one advantage that has been realized today as the libraries of
functions, patterns, and frameworks continue to grow.

Automated support for the application and integration of these reusable units
with newly defined designs and modules using a Computer Aided Software Engi-
neering (CASE) tool has created a new lexicon in this field. “Lower CASE” tools
now refer to code generation while “higher CASE” tools are those tools used in the

viii

construction and diagramming of proposed computer systems. There have recently
been proposals to integrate these two capabilities into a single tool, so that once a
system is proposed and analyzed using standard tools, such as Data Flow Diagrams
(DFD), Entity Relationship Diagrams, and Unified Modeling Language (UML), this
information is passed to another module of the tool to generate code consistent with
these diagrams.

As previously mentioned in this preface, during the past 30 years a generalized
body of knowledge about design as other aspects of software engineering pro-
cesses has emerged with some generally accepted standards. The reader should
refer to the “Guide to Software Engineering Body of Knowledge; SWEBOK” from
IEEE Computer Society for an excellent description of this body of common knowl-
edge and standards.

This book begins with a discussion of software patterns that are used to facili-
tate the reuse of object-oriented designs. While most CASE tools support the use of
UML to extract the design from the software engineer and to assist in the develop-
ment, most do not provide assistance in the integration and code generation of soft-
ware patterns. In this chapter, the authors analyze the Iterator software pattern for
the semantics that would be used in a CASE design tool to help the software engi-
neer integrate this pattern into a design and then generate some of the code needed
to implement the pattern. This work is based on semantic data modeling techniques
that were previously proposed for the design of active databases.

The next chapter introduces a theoretical frame for processes definition vali-
dation in workflow processes with temporal restrictions. Workflow Interface 1 pro-
vides the process definition of the Work Flow Reference Model. This interface
combines PNwC to provide the formalization and verification of systems based on
the Petri Net theory with an extension. This extension allows the specification of
temporal requirements via clock specification, using temporal invariants for the places
and temporal conditions in the transitions. This chapter presents a technique to
validate the process definition (PD) using Petri Nets with Clocks (PNwC). The
algorithm for the analysis of a PNwC allows for the correction of errors in the
modeling of the time variable. The algorithm generates information about temporal
unreachable states and process deadlocks with temporal blocks. It also corrects
activity invariants and transition conditions.

The third chapter identifies the key aspects of software engineering and sys-
tems engineering in an effort to highlight areas of consensus and conflict. The goal
is to support current efforts by practitioners and academics in both disciplines to
redefine their professions and bodies of knowledge. By using the Software Engi-
neering Institute’s Capability Maturity Model-Integrated (CMMISM) project, which
combines best practices from the systems and software engineering disciplines, it
can be shown that significant points of agreement and consensus are evident.
Nevertheless, valid objections to such integration remain as areas of conflict. It is
hoped that this chapter will provide an opportunity for these two communities to
resolve unnecessary differences in terminology and methodologies that are reflected

ix

in their differing perspectives and entrenched in their organizational cultures.
Historically the approach to software engineering has been based on a search

for an optimal (ideal) methodology— the identification and application of a set of
processes, methods and tools that can consistently and predictably lead to software
development success. The fourth chapter presents the basis for pursuing a more
flexible, adaptive approach. Less methodical techniques under a variety of names
take what is described as a contingency-oriented approach. Because of the limita-
tions in the nature of methodology, the high failure rate in software development, the
need to develop methodology within an environmental context and the pressures of
fast-paced “E” development, the authors argue that further exploration and defini-
tion of an adaptive, contingency-based approach to methodology is justified.

Chapter V challenges the established wisdom with respect to use cases. Use
cases are classically elaborate to capture the functional requirements of the system
by directly identifying objects, methods and data. Several authors of system analysis
and design books advocate this approach. However the research reported in this
paper indicates that there are better constructs for modeling use cases, at least
initially. Further objects are not a particularly good medium for discussing require-
ments with users. This paper rehearses the arguments leading up to these conclu-
sions and identifies some implications of these conclusions.

The theme of system development is continued in Chapter VI. Using the
RAISE specification development process, a variety of components and infrastruc-
tures are built. These components are not independent and are related to each
other, when the authors specify different systems into the same infrastructure. The
RAISE method is based on the idea that software development is a stepwise, evo-
lutionary process of applying semantics-preserving transitions. Reuse is crucially
impacted in all the stages of the development, but there is no explicit reference to
the specification of reusability in this development process. This chapter presents a
rigorous process for reusability using RSL (RAISE Specification Language) com-
ponents. The authors provide the mechanism to select a reusable component in
order to guide RAISE developers in the software specification and construction
process.

The section on system development concludes with Chapter VII. This chap-
ter introduces the Functional and Object-Oriented Methodology (FOOM) . This is
an integrated methodology for information systems analysis and design that com-
bines two essential software-engineering paradigms: the functional/data approach
(or process-oriented) and the object-oriented (OO) approach. FOOM has been
applied to a variety of domains. This chapter presents the application of the method-
ology to the specification of the “IFIP Conference” system with focus on the analy-
sis and design phases. The FOOM analysis phase includes data modeling and func-
tional analysis activities, and produces an initial Class Diagram and a hierarchy of
OO Data Flow Diagrams (OO-DFDs). The products of the design phase include:
(a) a complete class diagram; (b) object classes for the menus, forms and reports
and (c) a behavior schema, which consists of detailed descriptions of the methods

x

and the application transactions expressed in pseudocode and message diagrams.
Section II discusses methods to evaluate and manage the system development

process. Chapter VIII presents a comprehensive quantitative management model
for information technology. This methodology is assessment based and can be easily
implemented without imposing an unacceptable organizational change. It supplies
detailed information about the functioning of processes that allows managers to both
effectively oversee operations and assess their prospective and ongoing execution
risks. This offers a consistent risk reward evaluation.

Continuing with the theme of measurement and risk assessment Chapter IX
describes the foundation and properties of specific object-oriented software mea-
sures. Many measures for object-oriented applications have been constructed and
tested in development environments. However, the process of defining new mea-
sures is still alive. The reason for this lies in the difficulties associated with under-
standing and maintaining object-oriented applications. It is still difficult to relate the
measures to the phenomena that need to be improved. Do current measurements
indicate problems in reliability, maintenance or the unreasonable complexity of some
portions of the application?

In order to reduce the complexity of software, new development methodolo-
gies and tools are being introduced. The authors talk about a new approach to
development called separation of concern. Tools, such as Aspect/J or Hyper/J, fa-
cilitate the development process, but there does not seem to be a sound metrics suite
to measure complexity and efficiency of applications developed and coded with
Aspect/J or Hyper/J. In this chapter, the authors attempt to review the current
research into object-oriented software metrics and suggest theoretical framework
for complexity estimation and ranking of compositional units in object-oriented appli-
cations developed with Hyper/J.

Chapter X concludes the managing projects section by introducing a novel
notion of temporal interaction diagrams that can be used for testing and evaluating
distributed and parallel programming. An interaction diagram is a graphic view of
computation processes and communication between different entities in distributed
and parallel applications. It can be used for the specification, implementation and
testing of interaction policies in distributed and parallel systems. Expressing interac-
tion diagrams in a linear form, known as fragmentation, facilitates automation of
design and testing of such systems. Existing interaction diagram formalisms lack the
flexibility and capability of describing more general temporal order constraints. They
only support rigid temporal order, hence have limited semantic expressiveness. The
authors propose an improved interaction diagram formalism in which more general
temporal constraints can be expressed. This enables the capture of multiple valid
interaction sequences using a single interaction diagram.

Section III discusses specific applications and implementations that are best
solved by the principles of software engineering. Chapter XI begins this section
with relevant security issues that must be considered in any software implementa-
tion. While academicians and industry practitioners have long recognized the need

xi

for securing information systems and computer architectures, there has recently
been a heightened awareness of information technology (IT) management on com-
puter-related security issues. IT managers are increasingly worried about possible
attacks on computer facilities and software, especially for mission critical software.
There are many dimensions to providing a secure computing environment for an
organization, including computer viruses, Trojan horses, unauthorized accesses and
intrusions and thefts to infrastructure. This complexity and multidimensional nature
of establishing computer security requires that the problem be tackled on many
fronts simultaneously. Research in the area of information systems security has
traditionally focused on architecture, infrastructure and systems level security.
Emerging literature on application-level security, while providing useful paradigms,
remain isolated and disparate. The current study focuses on single, albeit an impor-
tant, dimension of providing a safe and secure computing environment — applica-
tion-software security.

The book progresses to a specific proposal for learning systems. Chapter XII
presents a project proposal for future work utilizing software engineering concepts
to produce learning processes in cognitive systems. This project outlines a number
of directions in the fields of systems engineering, machine learning, knowledge engi-
neering and profile theory that lead to the development of formal methods for the
modeling and engineering of learning systems. This chapter describes a framework
for formalization and engineering of the cognitive processes and is based on applica-
tions of computational methods. The work proposes the studies of cognitive pro-
cesses in software development process, and considers a cognitive system as a
multi-agent system of human cognitive agents. It is important to note that this frame-
work can be applied to different types of learning systems. There are various tech-
niques from different theories (e.g., system theory, quantum theory, neural networks)
that can be used for the description of cognitive systems, which, in turn, can be
represented by different types of cognitive agents.

Web-based applications are highlighted by Chapter XIII. Global competition
among today’s enterprises forces their business processes to evolve constantly, lead-
ing to changes in corresponding Web-based application systems. Most existing ap-
proaches that extend traditional software engineering to develop Web-based appli-
cation systems are based on OO methods. Such methods emphasize modeling indi-
vidual object behaviors rather than system behavior. This chapter proposes the Busi-
ness Process-Based Methodology (BPBM) for developing such systems. It uses a
business process as a unified conceptual framework for analyzing relationships be-
tween a business process and associated business objects, identifying business ac-
tivities and designing OO components called business components. The authors
propose measures for coupling and cohesion measurement in order to ensure that
these business components enable the potential reusability. These business compo-
nents can more clearly represent semantic system behaviors than linkages of indi-
vidual object behaviors. A change made to one business process impacts some
encapsulated atomic components within the respective business component without

affecting other parts of the system. A business component is divided into parts
suitable for implementation of multi-tier Web-based application systems.

Geographic Information Systems (GIS) are presented in Chapter XIV. This
chapter introduces an OO methodology for GIS development. It argues that a COTS-
based development methodology combined with the UML can be extended to sup-
port the spatio-temporal peculiarities that characterize GIS applications. The au-
thors suggest that by typifying both enterprises and developments, and, with a thor-
ough knowledge of the software component granularity in the GIS domain, it will be
possible to extend and adapt the proposed COTS-based methodologies to cover the
full lifecycle. Moreover, some recommendations are outlined to translate the meth-
odology to the commercial iCASE Rational Suite Enterprise and its relationships
with tool kits proposed by some GIS COTS vendors.

Chapter XIV makes the claim of improved efficiency and reliability of net-
working technology, providing a framework for service discovery where clients
connect to services over the network. It is based on a comparison of the client’s
requirements with the advertised capabilities of those services. Many service direc-
tory technologies exist to provide this middleware functionality, each with its own
default set of service attributes that may be used for comparison and its own default
search algorithms. Because the most expressive search ability might not be as im-
portant as robustness for directory services, the search algorithms provided are
usually limited when compared to a service devoted entirely to intelligent service
discovery.

To address the above problems, the authors propose a framework of intelligent
service discovery running alongside a service directory that allows the search ser-
vice to have a range of search algorithms available. The most appropriate algorithm
may be chosen for a search according to the data types found in the search criteria.
A specific implementation of this framework is presented as a Jini service, using a
constraint satisfaction problem solving architecture that allows different algorithms
to be used as library components.

Although component-based development (CBD) platforms and technologies,
such as CORBA, COM+/.NET and enterprise Java Beans (EJB) are now de facto
standards for implementation and deployment of complex enterprise distributed sys-
tems, according to the authors of Chapter XVI, the full benefit of the component
way of thinking has not been gained. Current CBD approaches and methods treat
components mainly as binary-code implementation packages or as larger grained
business objects in system analysis and design. Little attention has been paid to the
potential of the component way of thinking in filling the gap between business and
IT issues. This chapter proposes a service-based approach to the component con-
cept representing the point of convergence of business and technology concerns.
The approach defines components as the main building blocks of business-driven
service-based system architecture that provides effective business IT alignment.

The book now focuses its attention on specific issues of software engineering
as applied to telecommunications networks. Chapter XVII describes the design of

xii

a narrowband lowpass finite impulse response (FIR) filter using a small number of
multipliers per output sample (MPS). The method is based on the use of a fre-
quency-improved recursive running sum (RRS) called the sharpening RRS filter
and the interpolated finite impulse response (IFIR) structure. The filter sharpening
technique uses multiple copies of the same filter according to an amplitude change
function (ACF), which maps a transfer function before sharpening to a desired form
after sharpening. Three ACFs are used in the design as illustrated in examples
contained in this chapter.

The book closes with Chapter XVIII, which describes another telecommuni-
cation application. This chapter presents the design of narrowband highpass linear-
phase FIR filters using the sharpening RRS filter and the IFIR structure. The nov-
elty of this technique is based on the use of a sharpening RRS filter as an image
suppressor in the IFIR structure. In this way the total number of multiplications per
output sample is considerably reduced.

The purpose of this book is to introduce new and original work from around
the world that we believe expands the body of common knowledge in software
engineering. The order of this book attempts to tell a story, beginning with the
software process, including reusable code and specific design methodologies and
the methods associated with this formalized structure. The book then proceeds to
chapters that propose models to measure the system analysis and design process
and to direct the successful development of computer systems. The chapters then
progress to the next step in any system project — the implementation phase. This
section includes various aspects of using and integrating the engineered software
into a computer system. Its chapters address security and systems capable of
learning. The book then concludes with specific examples of Web-based and tele-
communication applications.

xiii

	Preface

