Chapter 15

Formal Semantics for Metamodel-Based Domain Specific Languages

Paolo Arcaini
Università degli Studi di Milano, Italy

Angelo Gargantini
Università di Bergamo, Italy

Elvinia Riccobene
Università degli Studi di Milano, Italy

Patrizia Scandurra
Università di Bergamo, Italy

ABSTRACT

Domain Specific Languages (DSLs) are often defined in terms of metamodels capturing the abstract syntax of the language. For a complete definition of a DSL, both syntactic and semantic aspects of the language have to be specified. Metamodeling environments support syntactic definition issues, but they do not provide any help in defining the semantics of metamodels, which is usually given in natural language. In this chapter, the authors present an approach to formally define the semantics of metamodel-based languages. It is based on a translational technique that hooks to the language metamodel its precise and executable semantics expressed in terms of the Abstract State Machine formal method. The chapter also shows how different techniques can be used for formal analysis of models (i.e., instance of the language metamodel). The authors exemplify the use of their approach on a language for Petri nets.

INTRODUCTION

In the context of language and software development, modeling is beginning to take a more prominent role. Model-based approaches consider models as first-class entities that need to be maintained, analyzed, simulated and otherwise exercised, and mapped into programs and/or other models by automatic model transformations. Domain Specific Languages (DSLs) themselves can be seen as artifacts of the model-based approach for language engineering. Indeed, in a model-based language definition, the abstract syntax of a language is defined in terms of an object-oriented model, called metamodel, that characterizes syntax elements and their relationships, so separating the abstract syntax and semantics of the language constructs from their
different concrete notations. Although a complete
definition of a DSL requires both syntactic and
semantic aspects of the language to be precisely
specified, metamodeling environments (Eclipse/
Ecore, GME/MetaGME, AMMA/KM3, XMF-
Mosaic/Xcore, etc.) cope with most syntactic and
transformation definition issues, but no standard
and rigorous way exists for defining language se-
manitics that is usually given in natural language.
A rigorous approach to specify the semantics of
metamodels is currently an open and crucial issue
in the model-driven context.

In general, metamodel semantics can be given
with different degrees of formality by a mapping
to a sufficiently well-known domain or target
platform (like the JVM). However, incomplete
and informal specifications of a language make
precise understanding of its syntax and semantics
difficult. Moreover, the lack of formally specified
language semantics can cause a semantic mismatch
between design models and tools supporting
the analysis of models of the language (Chen,
Sztipanovits, & Neema, 2005). We believe these
shortcomings can be avoided by integrating
metamodeling techniques with formal methods
providing the requested rigor and preciseness.
Applying a formal method to a DSL defined in a
metamodeling framework should have two main
goals: (a) allowing the definition of the seman-
tics of models conforming to the DSL and (b)
providing several techniques and methods for the
formal analysis (e.g., validation, property proving,
model checking, etc.) of such models. Indeed, a
semantics is essential to communicate the mean-
ing of models or programs to stakeholders in the
development process, and a formal definition of
the semantics of a DSL is a key prerequisite
for the verification of the correctness of models
specified using such a DSL.

In (Gargantini, Riccobene, & Scandurra, 2009;
Gargantini, Riccobene, & Scandurra, 2010),
the feasibility and the advantages of integrating
metamodeling techniques and formal methods in
the context of the ASM (Abstract State Machine)
formalism (Börger & Stärk, 2003) is analyzed.
(Gargantini, Riccobene, & Scandurra, 2009)
proposes different techniques to endow metamodel-
based languages with precise and executable
semantics. These techniques imply a different
level of automation, user freedom, possible reuse,
and user effort in defining semantics, but they all
share a common unifying formal ASM framework.

In this chapter, we present the application of
one of these techniques to express the semantics
(possibly executable) of metamodel-based DSLs.
We present the semantic hooking approach that al-
 lows designers to hook to the language metamodel
an ASM, which contains all data structures
modeling elements of the metamodel with their
relationships, and all transition rules representing
behavioral aspects of the language. Model-to-
text transformations are used to map metamodel
elements into corresponding ASM constructs.
We exemplify the application of our approach
on a language for Petri nets. This work extends
(Gargantini, Riccobene, & Scandurra, 2009) by
showing how different techniques, like simula-
tion, scenario-based validation, model review,
and model property checking, can be performed
for formal analysis of DSL models.

The chapter is organized as follows:

- **Background** provides an overview on the
 approaches existing in the literature for de-
 defining semantics of DSLs. It briefly intro-
 duces the Abstract State Machine formal
 method and the set of tools for model anal-
 ysis the method supports. Furthermore, a
 very concise description of the two main
 formal analysis activities, model validation
 and model verification, is given.
- **DSL Case Study: Petri Nets** presents the
 abstract syntax of a language for Petri nets
 used, throughout the chapter, as case study
to exemplify the approach of semantic def-
 inition and model analysis.
Related Content

Learning Words from Experience: An Integrated Framework
www.igi-global.com/chapter/learning-words-from-experience/108801?camid=4v1a

Multimodality in Action: New Literacies as More than Activity in Middle and High School Classrooms
www.igi-global.com/chapter/multimodality-in-action/108779?camid=4v1a

Musical Information Dynamics as Models of Auditory Anticipation
www.igi-global.com/chapter/musical-information-dynamics-models-auditory/45494?camid=4v1a

NLP for Search
www.igi-global.com/chapter/nlp-search/61042?camid=4v1a