This article (further referred to as Math-I), and the next
one (further referred to as Math-II, see p. 359), form a
mathematical companion to the article in this
encyclopedia on Generic Model Management (further
referred to as GenMMt, see p.258). Articles Math-I and
II present the basics of the arrow diagram machinery that
provides model management with truly generic
specifications. Particularly, it allows us to build a
generic pattern for heterogeneous data and schema
transformation, which is presented in Math-II for the first
time in the literature.

INTRODUCTION

Generic MMt (gMMt) is a novel view on metadata-centered
problems manifested by Bernstein, Halevy, and Pottinger
(2000). The main idea is to implement an environment where
one could manipulate models as holistic entities irrespec-
tively of their internal structure. It can be done only within
an integral framework for abstract generic specifications of
relations between models and operations with models.
However, building truly generic specifications presents a
problem of a new kind for the DB community, where such
familiar tools as first-order logic or relational algebra cannot
help. Amongst the most pressing gMMt problems listed in
Bernstein (2003)—the most complete presentation of gMMt
agenda to date—almost all are specification problems.

Fortunately, the community does not have to develop
the desired framework from scratch. As is manifested in
GenMMt, appropriate methodology and specification tech-
niques are already developed in mathematical category
theory (CT) and waiting to be adapted to gMMt needs.
The goal of Math-I and Math-II is to outline foundations of
the categorical approach to MMt and demonstrate how
it works in a few simple examples.

Our plan is as follows. The next section of the article
describes Kleisly arrows—the main vehicle of the ap-
proach. The section following it presents a simple example
of model merge as a sample demonstrating how the cat-
egorical treatment of MMt procedures works. We begin
by representing models in a graph-based format called
sketch and describe a general pattern for sketch merging.
After that, we reformulate the pattern in abstract terms to
make it applicable to any sort of models, not necessarily
sketches, although models are still supposed to be similar
(be instances of the same metamodel). The last section
summarizes this work by describing a generic arrow frame-
work for homogeneous MMt.

The next step—managing models’ heterogeneity, particu-
larly data and schema translation—is a highly
nontrivial issue, a truly generic solution to which is often
considered to be impossible (Bernstein, 2003). Neverthe-
less, it does exist and is presented (for the first time in the
literature) in Math-II. Based on some category theory
ideas, data and schema translation is specified in an
abstract generic way via the so-called Grothendieck
mappings. After that, homogeneous MMt specifications
presented in Math-I can be considered as abbreviations
for heterogeneous specifications, where arrows are inter-
preted as Grothendieck mappings. Particularly, the ab-
tract pattern of homogeneous model merge developed in
Math-I can be applied for heterogeneous merge as well.
The last section of Math-II summarizes the results and
outlines a general mathematical framework underlying
generic MMt specifications.

MODEL MAPPINGS AS
KLEISLY ARROWS

Do Model Mappings Really Map?

In the literature, the term “model mapping” usually refers
to a specification of correspondence between models. It
was noted by many authors that a general format of such
correspondence must involve derived items of the models
in question. In recent surveys, such as Lenzerini (2002),
it became common to describe a mapping between schemas
S and T as a set of assertions of the type $Q_1 \sim Q_2$, where
Q_1 and Q_2 are some queries over schema S and T, respec-
tively, and \sim denotes some comparison operator between
query outputs. It is assumed that queries (operations) are
terms formed by strings of operation symbols and vari-
ables, and assertions are formulas, i.e., strings composed
from terms and logical operators.

This framework is typical for string-based algebra and
logic familiar to the community, but it has a few inherited
Mathematics of Generic Specifications for Model Management, I

drawbacks for generic MMt applications. First of all, string-based terms and formulas are inadequate for expressing queries and constraints over graph-based models like ER or UML diagrams. In addition, it is unclear how to define composition of mappings in this setting. Not surprisingly, in all concrete applications and implementations of this framework, it is specialized for working with relational models; see Fagin, Kolaitis, Miller, and Popa (2003); Madhavan and Halevy (2003); and Velegrakis, Miller, and Popa (2003).

A more general framework is proposed in Bernstein et al. (2000). The main idea is to reify mappings as models and to attach correspondence assertions to elements of these model mappings (see Figure 2 in GenMMt). In this way model mappings become spans (whose legs, i.e., projection arrows, are model morphisms), and their composition is defined as composition of spans. Though semantically clear, span composition is much more complicated than composition of arrows, and the problem of composing expressions still persists. A common drawback of both approaches is that queries appear as something foreign to the models and need a special interface (Problem 3 in Table 2 in GenMMt).

All these problems are eliminated as soon as we consider the issue in the generic framework of categorical algebra developed in CT in the 60th-70th (see Manes, 1976, for a basic account). The key observation is that operations/queries against the model can be denoted by expressions still persists. A common drawback of both approaches is that queries appear as something foreign to the models and need a special interface (Problem 3 in Table 2 in GenMMt).

In our abstraction efforts in the right column, we can go even further and consider query expressions attributed to arrows rather than to models, as it is shown by Diagram (b3). In this way we come close to the notation with which we began our discussion, but note that in our case a figurative arrow $S \rightsquigarrow T$ is just an abbreviation of pair (Q,f), with Q a set of queries to the target schema and $f:S \rightarrow \text{der}^Q T$ a (functional) mapping of the source schema.

Figure 1. Specifying correspondences between models via Kleisly morphisms

![Diagram of correspondences between models via Kleisly morphisms]

Concrete specifications	Formal abstract specifications

Table PERSON (Table EMPLOYEE (
pin # integer name string	e-num # integer f-name string
name = l-name + f-name	name proj1 = l-name
name proj2 = f-name	f-name string

(a1) relational schemas

(a2) specifying their correspondence via mappings

(b1) convenient visualization

(b2) precise arrow notation

(b3) Kleisly arrows
Related Content

A Bayesian Belief Network Methodology for Modeling Social Systems in Virtual Communities: Opportunities for Database Technologies
www.igi-global.com/chapter/bayesian-belief-network-methodology-modeling/44386?camid=4v1a

Some Applications of Fuzzy Databases With FSQL
www.igi-global.com/chapter/some-applications-fuzzy-databases-fsql/18765?camid=4v1a

Novice Designer Performance Comparison Between the Entity Relationship Event Network and the Event-Based Logical Relational Design Techniques

Beyond Open Source: The Business of ‘Whole’ Software Solutions
www.igi-global.com/chapter/beyond-open-source/39363?camid=4v1a