Chapter 77
The Use of Soft Computing for Optimization in Business, Economics, and Finance

Petr Dostál
Brno University of Technology, Institute of Informatics, Czech Republic

ABSTRACT

Optimization methods have had successful applications in business, economics, and finance. Nowadays the new theories of soft computing are used for these purposes. The applications in business, economics, and finance have specific features in comparison with others. The processes are focused on private corporate attempts at making money or decreasing expenses; therefore the details of applications, successful or not, are not published very often. The optimization methods help in decentralization of decision-making processes to be standardized, reproduced, and documented. The optimization plays very important roles especially in business because it helps to reduce costs that can lead to higher profits and to success in the competitive fight.

1. INTRODUCTION

There are various optimization methods appropriate to use in business and economics: classical ones and methods using soft computing such as fuzzy logic, neural networks, genetic algorithms, and the theory of chaos.

Soft computing differs from conventional (hard) computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty, partial truth, and approximation. In effect, the role model for soft computing is the human mind. The guiding principle of soft computing is: Exploit the tolerance for imprecision, uncertainty, partial truth, and approximation to achieve tractability, robustness and low solution cost. The basic ideas underlying soft computing in its current incarnation have links to many earlier influences, among them Zadeh’s 1965 paper on fuzzy sets. The inclusion of neural computing and genetic computing in soft computing came at a later point.

At this juncture, the principal constituents of Soft Computing (SC) are Fuzzy Logic (FL), Neural Computing (NC), Evolutionary Computation (EC) Machine Learning (ML) and Probabilistic Reasoning (PR), with the latter subsuming belief networks, chaos theory and parts of learning theory. What is important to note is that soft com-
The Use of Soft Computing for Optimization in Business, Economics, and Finance

puting is not a melange. Rather, it is a partnership in which each of the partners contributes a distinct methodology for addressing problems in its domain. In this perspective, the principal constituent methodologies in SC are complementary rather than competitive. Furthermore, soft computing may be viewed as a foundation component for the emerging field of conceptual intelligence.

The mentioned applications in this chapter are as follows:

- Risk investment
- Risk management (loans, mortgages, direct mailing)
- Optimization of number of objects (devices, stock)
- Prediction of time series
- Journey optimization
- Description of economic phenomena (stock market).

The program MATLAB® with Fuzzy Logic, Neural Network, and Global Optimization Toolbox is used. The fields of applications of optimization methods in business, economics, and finance cover a wide area of applications.

2. FUZZY LOGIC

2.1 Fundamentals of Fuzzy Logic

In classical logic, a theory defines a set as a collection having certain definite properties. Any element belongs to the set or not according to clear-cut rules; membership in the set has only the two values 0 or 1. Later, the theory of fuzzy logic was created by Zadeh in 1965. Fuzzy logic defines a variable degree to which an element \(x \) belongs to the set. The degree of membership in the set is denoted \(\mu(x) \); it can take on any value in the range from 1 to 0, where 0 means absolute non-membership and 1 full membership. The use of degrees of membership corresponds better to what happens in the world of our experience. Fuzzy logic measures the certainty or uncertainty of how much the element belongs to the set. People make analogous decisions in the fields of mental and physical behaviour. By means of fuzzy logic, it is possible to find the solution of a given task better than by classical methods.

The fuzzy logic system consists of three fundamental steps: fuzzification, fuzzy inference, and defuzzification (see Figure 1).

The first step (fuzzification) means the transformation of ordinary language into numerical values. For variable risk, for example, the linguistic values can be no, very low, low, medium, high, and very high risk. The variable usually has from three to seven attributes (terms). The degree of membership of attributes is expressed by mathematical functions. There are many shapes of membership functions. For example, for \(mf_1, P = [0 0 3] \); \(mf_2, P = [2 4 6] \); \(mf_3, P = [4 6 7 9] \); \(mf_4, P = [8 10 10] \); and so forth (see Figure 2).

The types of membership functions that are used in practice are for example \(\Lambda \) and \(\Pi \). There are many other types of standard membership functions on the list including spline ones. The attribute and membership functions concern input and output variables.

The second step (fuzzy inference) defines the system behaviour by means of the rules such as \(<IF>, <THEN>, <WITH>\). The conditional

Figure 1 Decision making solved by means of fuzzy logic