Chapter 1

STEM in Early Childhood Education: We Talk the Talk, But Do We Walk the Walk?

Alper Tolga Kumtepe
Anadolu University, Turkey

Evrim Genc-Kumtepe
Anadolu University, Turkey

ABSTRACT

The chapter reviews previously published articles and summarizes trends in STEM research in early childhood education over the last twelve years (2000-2012) by employing a content analytic procedure. The specific purposes of the study are to determine the general characteristics of the STEM research in early childhood education, to identify the research designs being applied in articles, and to reveal the common research topics/issues on STEM education in the field of early childhood education. A total of 41 articles are extracted from a wide range of publications. Thematic analysis reveals two main themes and nine subthemes on research topics/issues, including policy, management, equity issues, STEM schools, theories, models, professional development, teacher support, program development and evaluation, learner and teacher attributes, and pre-service teacher education.

INTRODUCTION

We all should have certain knowledge and skills about science and technology in today’s Information Age society. Contrary to traditional schooling, this is an emphasis on what our students can do with knowledge rather than what units of knowledge and skills they have, that best reflects 21st century skills and requirements. It is believed that this core notion would ensure that children not only pursue science and technology for their careers but also become citizens literate in STEM areas (Yager, 2012). In order to capitalize the momentum, this action should step into education in these disciplines as early as preschool and kindergarten even though science is considered as the most neglected area in these periods (Moomaw & Davis, 2010).

DOI: 10.4018/978-1-4666-7363-2.ch001
STEM in Early Childhood Education

Previous research in science, mathematics, and technology has found a new channel to replenish in recent years as STEM has emerged as an umbrella term. STEM is an acronym for fields of science, technology, engineering, and mathematics. It was coined by the National Science Foundation (NSF) in the early 2000s and until today numerous projects have been funded by the organization. Although STEM is applied to any policy, event, or curriculum dealing with Science, Technology, Engineering, and Mathematics, it has been mainly focused on Science and Mathematics, particularly in K-12 education. By integrating four disciplines in one cohesive paradigm, STEM education naturally calls for an integrative curriculum aimed at preparing students for being creative and innovative problem solvers, researchers, engineers, and designers. However, the United States National Academies in 2007 reported the declining status of STEM education and offered three recommendations to advance efforts towards preparing students for the challenges of the 21st century (National Academies, 2007):

- Increase the talent pool by improving K-12 science and mathematics education;
- Strengthen the skills of teachers through additional training in science, math and technology;
- Enlarge the pipeline of students prepared to enter college and graduate with STEM degrees.

Other organizations like the National Aeronautics and Space Administration and the National Science Foundation have also called for action and have implemented programs and curricula to advance STEM education. Design of the early STEM experiences and environments is heavily dependent on the abilities of teachers. The teacher and the environment in early childhood institutions play key roles in successful applications of STEM education. However, the level of science knowledge is linked to increased positive attitudes towards science and in turn, positive attitudes are linked to more frequent and effective science teaching practices (Eshach, 2006; Faulkner-Schneider, 2005; Garbett, 2003). When teachers are not equipped with adequate science knowledge, they tend to stay away from science activities in early childhood classrooms (Cullen, 2000; Garbett, 2003; Hedges & Cullen, 2002). The current chapter will therefore contribute to the literature by addressing this critical gap in the field of early childhood education. The current chapter is based on a review of STEM education over the last twelve years (2000-2012) by employing content analysis procedure. Previous research has shown that STEM education is an essential part of 21st century early childhood education. It would be a valid answer to a vital question: when it comes to STEM education, particularly in early childhood education, would we really walk the talk? Do we really walk the talk when it comes to STEM education, particularly in early childhood education? The current chapter is based on a review of STEM education over the last twelve years (2000-2012) by employing content analysis procedure. Previous research has shown that STEM education is an essential part of 21st century early childhood education.
Related Content

Visualizing Condensation: Integrating Animation-Developing Technology in Chemistry Classes
Sevil Akaygun (2016). Improving K-12 STEM Education Outcomes through Technological Integration (pp. 172-185).
www.igi-global.com/chapter/visualizing-condensation/141186?camid=4v1a

Active Learning, Mentoring, and Mobile Technology: Meeting Needs across Levels in One Place
www.igi-global.com/chapter/active-learning-mentoring-and-mobile-technology/121872?camid=4v1a

Teaching a Socially Controversial Scientific Subject: Evolution
www.igi-global.com/chapter/teaching-a-socially-controversial-scientific-subject/121882?camid=4v1a

Identifying the Target Needs of Non-Native Subject Teachers Related to the Use of English in Their Professional Settings: A Case from Northern Iraq
Ece Zehir Topkaya and brahim Nianc (2016). Innovative Professional Development Methods and Strategies for STEM Education (pp. 149-175).
www.igi-global.com/chapter/identifying-the-target-needs-of-non-native-subject-teachers-related-to-the-use-of-english-in-their-professional-settings/139657?camid=4v1a