Chapter 98
QoS in the Mobile Cloud Computing Environment

Zhefu Shi
University of Missouri – Kansas City, USA

Cory Beard
University of Missouri – Kansas City, USA

ABSTRACT

Mobile Cloud Computing (MCC) integrates cloud computing into the mobile environment and overcomes obstacles related to performance (e.g., bandwidth, throughput) and environment (e.g., heterogeneity, scalability, and availability). Quality of Service (QoS), such as end-to-end delay, packet loss ratio, etc., is vital for MCC applications. In this chapter, several important approaches for performance evaluation in MCC are introduced. These approaches, such as Markov Processes, Scheduling, and Game Theory, are the most popular methodologies in current research about performance evaluation in MCC. QoS is special in MCC compared to other environments. Important QoS problems with details in MCC and corresponding designs and solutions are explained. This chapter covers the most important research problems and current status related to performance evaluation and QoS in MCC.

1. INTRODUCTION

Cloud computing is considered as the next generation’s computing infrastructure. Cloud computing provides services such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS). Cloud providers, such as Google, Amazon, and Microsoft, are providing more and more applications, including mobile applications. Cloud computing is a large scale economic and business computing paradigm. The cloud computing system provides various QoS guaranteed services such as hardware, infrastructure, platform, software and storage to different Internet applications and users. Cloud computing includes resources of computing and storage. It includes infrastructure layer, platform layer, and application layer (Figure 1).

Mobile Computing is a form of human-computer interaction. Mobile computing is based on a collection of three major concepts: hardware, software and communication. Hardware is mobile devices, such as smartphone and laptop, or their mobile components. Software of mobile comput-
ing is the numerous mobile applications, such as
the mobile browser, and games. The communica-
tion issue includes the infrastructure of mobile
networks, protocols and data delivery.

The features of mobile computing include:

- **Mobility**: Mobile nodes can establish con-
nexions with others or with fixed nodes
through a Mobile Support Station (MSS)
as they are moving.
- **Diversity of Network Conditions**: Networks used by mobile nodes are not
unique; such networks can be a wired
network with high-bandwidth, or a wire-
less Wide Area Network (WWAN) with
low-bandwidth.
- **Frequent Disconnection and Consistency**: Mobile nodes will not al-
ways keep the connection, but disconnect
and are consistent with the wireless net-
work passively or actively.
- **Low Reliability**: A mobile computing sys-
tem needs to be considered from networks,
database platforms, and applications devel-
opment to address the security issue.

MCC is an integration of cloud computing
into mobile network. From MCC Forum, MCC
is defined as:

MCC at its simplest refers to an infrastructure
where both the data storage and the data process-
ing happen outside of the mobile device. Mobile
cloud applications move the computing power
and data storage away from mobile phones and
into the cloud, bringing applications and mobile
computing to not just smartphone users but a much
broader range of mobile subscribers.

Because mobile applications can be quickly
released and minimally managed, MCC brings
new types of services and facilities. Mobile ap-
plications include mobile commerce, mobile
learning, and mobile healthcare (Doukas, Pliakas,
Maglogiannis, 2010; Rao, Sasidhar, Kumar, 2010;
Prasad, Gyani, Murti, 2012).

The development of mobile devices in these
years has dramatically changed the wireless
landscape for both wireless providers and handset
users. For providers, the popularity of iPhone and
Android-based phones has been accompanied by

Figure 1. Cloud service model
Related Content

Architecture of an Event Processing Application for Monitoring Cardiac Patient Wait Times
www.igi-global.com/article/architecture-event-processing-application-monitoring/68962?camid=4v1a

Estimation of a Priori Decision Threshold for Collocations Extraction: An Empirical Study
www.igi-global.com/article/estimation-of-a-priori-decision-threshold-for-collocations-extraction/100051?camid=4v1a

An Approach to Web-Based Application Integration Using Java Adapters and XML
www.igi-global.com/chapter/approach-web-based-application-integration/31412?camid=4v1a

City Brands and their Communication through Web Sites: Identification of Problems and Proposals for Improvement
www.igi-global.com/chapter/city-brands-their-communication-through/37683?camid=4v1a