Chapter 10
Adapting to the Traffic Swarm: Swarm Behaviour for Autonomous Cars

Fritz Ulbrich
Free University of Berlin, Germany

Simon Sebastian Rotter
Free University of Berlin, Germany

Raul Rojas
Free University of Berlin, Germany

ABSTRACT
Swarm behavior can be applied to many aspects of autonomous driving: e.g. localization, perception, path planning or mapping. A reason for this is that from the information observed by swarm members, e.g. the relative position and speed of other cars, further information can be derived. In this chapter the processing pipeline of a “swarm behavior module” is described step by step from selecting and abstracting sensor data to generating a plan – a drivable trajectory – for an autonomous car. Such a swarm-based path planning can play an important role in a scenario where there is a mixture of human drivers and autonomous cars. Experienced human drivers flow with the traffic and adapt their driving to the environment. They do not follow the traffic rules as strictly as computers do, but they are often using common sense. Autonomous cars should not provoke dangerous situations by sticking absolutely to the traffic rules, they must adapt their behavior with respect to the other drivers around them and thus merge with the traffic swarm.

INTRODUCTION
Limitations of Map-Based Path Planning
Autonomous cars are going to play a major role in future traffic. Even today there are many prototypes which are able to navigate in a complicated urban environment (Rojo et al., 2007). See the autonomous car “MadeInGermany” in Figure 1.

Current state of the art path planning for autonomous driving is based mostly on maps (Czerwionka, 2014). Predefined paths through the environment are stored in those maps, as well as additional information such as speed limits or stop signs. In general, a path is planned along

DOI: 10.4018/978-1-4666-9572-6.ch010
Adapting to the Traffic Swarm

those predefined trajectories, using data from the cars sensors (e.g. GPS, lidar, radar, and cameras) for localization and environment recognition (Göhring, Wang, Schnürmacher, & Ganjineh, 2011). Although the environment can influence the planned path to enable reactive manoeuvres (Wang, 2012) or interaction with dynamic changes can be realized in a low level controller (Göhring, 2012), autonomous cars are bound to stick to the roads and rules defined by maps. There are many advantages to a map based approach. E.g. the car can plan ahead and find the shortest path through the road network. Also the current velocity could be adapted far-sighted to the known trajectory of the road ahead. On the other hand there are several disadvantages in map-based approaches.

One fundamental problem is, that maps may not always be available at all or not in the needed level of detail. Another problem is, that maps are previously known information, which is usually stored some time before the actual driving is performed. Nowadays traffic infrastructure is underlying frequent changes. Map data can be outdated very fast: Roads are closed down due to construction works and new roads are build. Furthermore there are streets where the number or direction of drivable lanes changes based on time, weather or volume of traffic. Figure 2 shows example scenarios. Those frequent changes are addressed by concepts of dynamic maps, which could be distributed to the car with C2X communication technology. But there are cases where it is difficult or even impossible to acquire the momentary data needed for a reliable dynamic map.

The following examples illustrate highly dynamic situations, which are commonly occurring.

Figure 1. The autonomous car “MadeInGermany” used in the AutoNOMOS Project. Source: Rotter (2014).

Figure 2. Scenarios, where the actual lanes are defined dynamically by the traffic participants. Left: A roundabout in Mexico City without dedicated lanes. Depending on the traffic volume the trajectories of the cars passing the roundabout vary heavily. Source: AutoNOMOS Labs. Right: A snow-covered German highway. Three lanes are declared by road markings. Nonetheless the drivers decided to use a safer approach with only two lanes. Source: Klaus Steves / pixelio.de
Related Content

Why Do I Feel Like This?: The Importance of Context Representation for Emotion Elicitation
[www.igi-global.com/article/feel-like-importance-context-representation/58363?camid=4v1a](www.igi-global.com/article/feel-like-importance-context-representation/58363?camid=4v1a)

Are Robots Autistic?
[www.igi-global.com/chapter/robots-autistic/65828?camid=4v1a](www.igi-global.com/chapter/robots-autistic/65828?camid=4v1a)

Prototyping and Real-Time Implementation of Bipedal Humanoid Robots: Dynamically Equilibrated Multimodal Motion Generation
[www.igi-global.com/chapter/prototyping-and-real-time-implementation-of-bipedal-humanoid-robots/84921?camid=4v1a](www.igi-global.com/chapter/prototyping-and-real-time-implementation-of-bipedal-humanoid-robots/84921?camid=4v1a)

Robust Adaptive Central Difference Particle Filter
[www.igi-global.com/article/robust-adaptive-central-difference-particle-filter/122261?camid=4v1a](www.igi-global.com/article/robust-adaptive-central-difference-particle-filter/122261?camid=4v1a)