Chapter VI

An XML-Based Approach to Multimedia Engineering for Distance Learning

T. Arndt, Cleveland State University, USA
S. K. Chang, University of Pittsburgh, USA
A. Guercio, Kent State University, USA
P. Maresca, University of Naples Federico II, Italy

Abstract

Multimedia software engineering (MSE) is a new frontier for both software engineering (SE) and visual languages (VL). In fact, multimedia software engineering can be considered as the discipline for systematic specification, design, substitution, and verification of visual patterns. Visual languages contribute to MSE such concepts as: Visual notation for software specification, design, and verification flow charts, ER diagrams, Petri nets, UML visualization, visual programming languages, etc. Multimedia software engineering and software engineering are like two sides of the same coin.
On the one hand, we can apply software engineering principles to the design of multimedia systems. On the other hand, we can apply multimedia technologies to the software engineering practice. In this chapter, we concentrate on the first of these possibilities. One of the promising application areas for multimedia software engineering is distance learning. One aim of this chapter is to demonstrate how it is possible to design and to implement complex multimedia software systems for distance learning using a tele-action object transformer based on XML technology applying a component-based multimedia software engineering approach. The chapter shows a complete process of dataflow transformation that represents TAO in different ways (text, TAOML, etc.) and at different levels of abstraction. The transformation process is a reversible one. A component-based tool architecture is also discussed. We also show the first experiments conducted jointly using the TAOML_T tool. The use of an XML-based approach in the distance learning field has other advantages as well. It facilitates reuse of the teaching resources produced in preceding decades by universities, schools, research institutions, and companies by using metadata. The evolution of the technologies and methodologies underlying the Internet has provided the means to transport this material. On the other hand, standards for representing multimedia distance learning materials are currently evolving. Such standards are necessary in order to allow a representation which is independent of hardware and software platforms so that this material can be examined, for example, in a Web browser or so that it may be reused in whole or in part in other chapters of a book or sections of a course distinct from that for which it was originally developed. Initial experiments in reuse of distance learning carried out at the University of Naples, Kent State University, and Cleveland State University are described. The authors have also developed a collaboration environment through which the resources can be visualized and exchanged.

Introduction: Multimedia Software Engineering

For many years, the need to represent data in a portable format has grown in the industrial and in the academic community. In the past, data was kept in a format that couldn’t be read by a different computer and the applications couldn’t be run under different operating systems or on other hardware platforms. Today, with the spread of computer networks, it is necessary to support portability and interoperability so that data can flow through many networks in a way transparent to the user.
Related Content

Course Management Systems Integration into Course Instruction
www.igi-global.com/article/course-management-systems-integration-into/65579?camid=4v1a

User Interface Design Pedagogy: A Constructionist Approach
www.igi-global.com/article/user-interface-design-pedagogy/49705?camid=4v1a

Disability, Chronic Illness and Distance Education
www.igi-global.com/chapter/disability-chronic-illness-distance-education/27629?camid=4v1a
Evaluating Online Programs Using a BSC Approach
www.igi-global.com/chapter/evaluating-online-programs-using-bsc/12204?camid=4v1a