INTRODUCTION

Today’s technology allows storing vast quantities of information from different sources in nature. This information has missing values, nulls, internal variation, taxonomies, and rules. We need a new type of data analysis that allows us to represent the complexity of reality, maintaining the internal variation and structure (Diday, 2003).

In Data Analysis Process or Data Mining, it is necessary to know the nature of null values - the cases are by absence value, null value or default value -, being also possible and valid to have some imprecision, due to differential semantic in a concept, diverse sources, linguistic imprecision, element resumed in Database, human errors, etc (Chavent, 1997). So, we need a conceptual support to manipulate these types of situations. As we are going to see below, Symbolic Data Analysis (SDA) is a new issue based on a strong conceptual model called Symbolic Object (SO).

A “SO” is defined by its “intent” which contains a way to find its “extent”. For instance, the description of habitants in a region and the way of allocating an individual to this region is called “intent”, the set of individuals, which satisfies this intent, is called “extent” (Diday 2003). For this type of analysis, different experts are needed, each one giving their concepts.

Basically, Diday (Diday, 2002) distinguishes between two types of concept:

1. The concepts of the real world: That kind of concept is defined by an “intent” and an “extent” which exist, have existed or will exist in the real world.
2. The concepts of our mind (among the so called “mental objects” by J.P. Changeux (1983)) which frame in our mind concepts of our imagination or of the real world by their properties and a “way of finding their extent” (by using the senses), and not the
extent itself as (undoubtedly!), there is no
room in our mind for all the possible extents
(Diday, 2003).

A “SO” models a concept, in the same way
our mind does, by using a description “d” (repre-
senting its properties) and a mapping “a” able to
compute its extent, for instance, the description
of what we call a “car” and a way of recognizing
that a given entity of in the real world is a car.
Hence, whereas a concept is defined by intent
and extent, it is modeled by intent and a way of
finding its extent is by “SOs” like those in our
mind. It should be noticed that it is quite impos-
sible to obtain all the characteristic properties
of a concept and its complete extent. Therefore, a
SO is just an approximation of a concept and the
problems of quality, robustness and reliability of
this approximation arise (Diday, 2003).

The topic is presented as follows: First, in
the background section, the History and Fields
of Influence and Sources of Symbolic Data.
Second, in the focus section Formal definitions
of SO and SDA, Semantics applied to the SO
Concept and Principles of SDA. Third: Future
Trends. Then Conclusions, References, Terms
and Definitions.

BACKGROUND

Diday presented the first article on 1988, in the
Proceedings of the First Conference of the Interna-
tional Federation of Classification Societies (IFCS)
(Bock & Diday 2000). Then, much work has been
done up to the publication of Bock, Diday (2000)
and the Proceedings of IFCS’2000 (Bock & Diday
2000). Diday has directed an important quantity
of PhD Thesis, with relevant theoretical aspects
for SO. Some of the most representatives works
are: Brito P. (1991), De Carvalho F. (1992), Auriol

Now, we are going to explain the fundamentals
that the SDA holds from their fields of influence
and the most representative authors:

• **Statistics:** From Statistics the SO counts. It
 knows the distributions.
• **Exploratory analysis:** The capacity of showing
 new relations between the descriptors
 {Tukey, Benzecri} (Bock & Diday 2000).
• **Cognitive sciences and psychology:** The
 membership function of the SO is to provide
 prototypical instances characterized by the
 most representative attributes and individu-
 als {Rosch} (Diday, 2003).
• **Artificial intelligence:** The representation
 of *complex knowledge*, and the form of
 manipulation. This is more inspired from
 languages based on first order logic
 {Aristotle, Michalski, Auriol} (Diday, 2003).
• **Biology:** They use taxonomies and solu-
 tions widely investigated in this area
 {Adamson} (Bock & Diday 2000).
• **Formal concept analysis:** The Complete
 Object Symbolic is a Galois Lattice
 {Wille R.} (Polaillon, 1998).

In some of these sciences, the problem is how
to obtain classes and their descriptions (Bock &
Diday, 2000)

The “**Symbolic data tables**” constitute the
main input of a SDA, helped by the **Background
Knowledge** (Diday, 2003). In the chapter I of Bock
H and Diday E’s book are mentioned as follow:
each cell of this symbolic data table contains data
of different types:

(a) **Single quantitative value:** if « height » is a
variable and w is an individual: height (w) = 3.5.

(b) **Single categorical value:** Town (w) =
Tandil.
Related Content

Requirement Specification and Conceptual Modeling for Data Warehouses
www.igi-global.com/chapter/requirement-specification-conceptual-modeling-data/20689?camid=4v1a

Semantic Resolution in Multi-Database Environments
www.igi-global.com/article/semantic-resolution-multi-database-environments/51152?camid=4v1a

Intelligent Cache Management for Mobile Data Warehouse Systems
www.igi-global.com/article/intelligent-cache-management-mobile-data/3331?camid=4v1a

Ontological Assumptions in Information Modeling
www.igi-global.com/chapter/ontological-assumptions-information-modeling/11185?camid=4v1a