Chapter III
Problems Rendezvousing: A Diary Study

Martin Colbert
Kingston University, UK

ABSTRACT
This chapter seeks opportunities to use mobile technology to improve human mobility. To this end, the chapter reports a diary study of university students’ use of mobile telephones for rendezvousing—arranging, and traveling to, informal meetings with friends and family. This diary study reveals, and suggests explanations for, a number of deficits in user performance: (1) rendezvouers occasionally become highly stressed and lose valuable opportunities; (2) outcomes are worse when rendezvousing at unfamiliar locations; (3) 31 to 45 year olds report more personal sacrifices than 18 to 30 year olds; and (4) when mobile phones are used on the move, the experience of communication is slightly worse than when phones are used prior to departure. Ways of using mobile technology to make good these deficits are suggested.

INTRODUCTION
Mobile Technology and Human Mobility

Between 1997 and 2001, ownership of GSM mobile telephones rose from 27 percent of the UK public to 73 percent (Butcher, 2003). One important reason for this rapid adoption of mobile technology was anytime, anywhere access to voice telephony. Talking on mobile telephones gave users the freedom to roam away from fixed access points and remain contactable, even when life took them to diverse, unpredictable locations (Palen et al., 2000). Mobile telephony also acted as a flexible, ‘proxy’ for resources elsewhere. Rather than endure unproductive, ‘dead time,’ mobile workers could use their mobile phone to have faxes read or sent, or to learn about developments on other projects (Perry et al., 2001). Mobile telephony was also useful for fine-grain, moment-to-moment awareness and co-ordination.
Problems Rendezvousing

For example, friends out shopping together could split up to visit different shops, and then use their mobile phones to discuss interesting sale items, and arrange how to meet up again (Ling & Yttri, 2001). Mobile technology was adopted, it appears, and in addition to other reasons\(^1\), because it made ‘being on the move’ less unproductive and smoother-flowing. In this sense, mobile phones improved everyday mobility.

Such improvements are of interest, because everyday mobility is an important activity (Pooley et al., 2005). Mobility has practical value as an activity that enables individuals to function—to eat, work, sleep—and, as such, it is fundamental to society. It also has social value—the movement that makes life possible also enables interactions that support personal relationships, social networks, and local communities. It adds meaning to life and contributes to society, for good or bad. Mobility also acquires meaning itself and so contributes to our definitions of self (“we are how we travel”), and mobility is part of the process by which individuals learn about, and give meaning to, place and space. Finally, mobility has psychological consequences. It encourages individuals to feel a certain way, and to hold certain attitudes.

Future Technology for Mobility and Rendezvousing

Subsequent generations of mobile technology, however, will not necessarily be adopted as widely or as rapidly as GSM phones. To be adopted, broader-band wireless networks, multimedia input and output capabilities, integrated cameras, positioning mechanisms, context sensors, and so on need to be combined into ‘packages’ of device, service and network that actually improve mobility for many segments of the general public. But what kind of improvement will bring measurable benefits in mobility to users?

Sometimes, potential improvements are relatively easy to identify and confirm. For example, commuting and long distance travel is often “boring.” Consequently, the public may want to download music and video files, play computer games, send picture messages, and consume ‘live’ streams of audio and video data to escape the tedium of waiting rooms, train carriages and other kinds of transit locale (Antilla & Jung, 2006, p. 222). However, other potential improvements are less obvious and less certain. For example, consider rendezvousing, that is, the informal coordination of a face-to-face meeting between friends and family\(^2\). The shopping rendezvous described in Figure 1 appears “poor” at first glance, because one party arrived late. However, the delay was caused by a traffic jam (and we can not expect mobile IT to free the roads of congestion), and the rendezvouers used existing GSM telephony to adjust their plans and maintain their convenience and comfort. So where is ‘the problem’?

One approach to identifying user problems begins by identifying deficits in user performance, that is, in this case, respects in which human mobility is observably ‘worse’ under some conditions than others. The identification of any deficit suggests the design goal of removing or “making good” the deficit—a deficit provides a starting point for discussing the improvements that technology might achieve\(^3\).

AIM: TO IDENTIFY OPPORTUNITIES TO IMPROVE RENDEZVOUSING

The work reported here, then, seeks opportunities for mobile technology to improve rendezvousing. To this end, it reports a diary study of university students’ use of mobile telephones for rendezvousing. The study reveals a number of deficits in rendezvousing performance, and describes the interactive behaviour that brought about these deficits. Design suggestions that illustrate how the deficits might be made good are then presented\(^3\).

The study extends the literature about user performance with communication systems to cover mobile technology and ‘mobile’ contexts of use\(^3\). Previous work concerned table-top communication systems in stationary contexts. This work includes, for example, an investigation of the effects of prepared scripts upon the consensus reached during chat sessions (Farnham et