Chapter 3.13
Mobility and Multimodal User Interfaces

Christopher J. Pavlovski
IBM Corporation, Australia

Stella Mitchell
IBM T. J. Watson Research, USA

INTRODUCTION

Traditional user interface design generally deals with the problem of enhancing the usability of a particular mode of user interaction, and a large body of literature exists concerning the design and implementation of graphical user interfaces. When considering the additional constraints that smaller mobile devices introduce, such as mobile phones and PDAs, an intuitive and heuristic user interface design is more difficult to achieve.

Multimodal user interfaces employ several modes of interaction; this may include text, speech, visual gesture recognition, and haptics. To date, systems that employ speech and text for application interaction appear to be the mainstream multimodal solutions. There is some work on the design of multimodal user interfaces for general mobility accommodating laptops or desktop computers (Sinha & Landay, 2002). However, advances in multimodal technology to accommodate the needs of smaller mobile devices, such as mobile phones and portable digital assistants, are still emerging.

Mobile phones are now commonly equipped with the mechanics for visual browsing of Internet applications, although their small screens and cumbersome text input methods pose usability challenges. The use of a voice interface together with a graphical interface is a natural solution to several challenges that mobile devices present. Such interfaces enable the user to exploit the strengths of each mode in order to make it easier to enter and access data on small devices. Furthermore, the flexibility offered by multiple modes for one application allows users to adapt their interactions based on preference and on environmental setting. For instance, hands-free speech operation may be conducted while driving, whereas graphical interactions can be
adopted in noisy surroundings or when private
data entry, such as a password, is required in a
public environment.
In this article we discuss multimodal tech-
nologies that address the technical and usability
constraints of the mobile phone or PDA. These
environments pose several additional challenges
over general mobility solutions. This includes
computational strength of the device, bandwidth
constraints, and screen size restrictions. We
outline the requirements of mobile multimodal
solutions involving cellular phones. Drawing
upon several trial deployments, we summarize
the key designs points from both a technology and
usability standpoint, and identify the outstanding
problems in these designs. We also outline
several future trends in how this technology is
being deployed in various application scenarios,
ranging from simple voice-activated search en-
gines through to comprehensive mobile office
applications.

BACKGROUND
Multimodal interaction is defined as the ability to
interact with an application using multiple sensory
channels (i.e., tactile, auditory, visual, etc.). For
example, a user could provide input by speaking,
typing on a keypad, or handwriting, and receive
the subsequent response in the form of an audio
prompt and/or a visual display. Useful multimodal
applications can cover a broad spectrum including
tightly synchronized, loosely synchronized, and
complementary modes of operation. Synchroni-
ization behavior must be defined both for input
(the way in which input from separate modes
is combined) and for output (the way in which
input from one mode is reflected in the output
modes). The W3C distinguishes several types of
multimodal synchronization for input as follows
(W3C, 2003a):

- **Sequential**: Two or more input modalities
 are available, but only a single modality is
 available at any given time.
- **Simultaneous**: Allows input from more
 than one modality at the same time, but each
 input is acted upon separately in isolation
 from the others.
- **Composite**: Provides for the integration of
 input from different modes into one single
 request.

A general framework for multimodal systems
is depicted in Figure 1. This diagram elaborates
further on several fundamentals positioned by
W3C.

The interaction manager is responsible for
combining multiple requests, dialog management,
and synchronization. The function of receiving
and combining multiple inbound requests is the
responsibility of the integration manager sub-
component. Conversely, the generation manager
is responsible for distributing multimodal output
to all of the respective output channels (modes)
via an interpretation layer, which may involve
text to speech (TTS) conversion or transcoding
of graphical content to accommodate the needs of
the target modality. Earlier work in multimodal
systems referred to the integration tasks relating
to composition and decomposition of requests as
fusion and fission respectively (Coutaz, Nigay, &
Salber, 1993).

Speech-based telephone interfaces currently
available in the commercial market commonly
use varying levels of directed dialog. Directed
dialog, as the name implies, employs a style of
system prompts that helps to “direct” the user
in what to say next. Users are often presented
with spoken menu options from which they can
make a selection, thus navigating in a controlled
manner until the task is completed. Much of the
naturalness and power of speech is undermined
when the application relies too heavily on the use
of directed dialogs. A Natural Language speech
interface, which allows the user to phrase their