Chapter II

Consensus Versus Speed

Roy Rada
University of Maryland, Baltimore County

INTRODUCTION

One standards organization takes years to reach consensus, while another standards organization takes months (Rada, 1995a). Changes are occurring in the most famous and internationally powerful standards organization, the International Organization for Standardization (ISO), to speed its consensus process. However, other organizations already combine some consensus with exceptional speed and may have greater impact on the standards world.

The tension between consensus and speed is inevitable. New technologies support communication and decision-making, and these technologies should be used to narrow the gap between standards’ processes that are strong in consensus and those that are fast. Consensus by those who bless the development of standards does not necessarily imply consensus in the community of those who use it. Both kinds of consensus are important, and information technology tools for standards development and dissemination can help achieve consensus.

This chapter will examine the attempts by standards organizations to increase speed without sacrificing consensus. The analysis reveals that organizations are cooperating in new ways that should increase the speed with which standards documents arise. Different communities of consensus result. The traditional standards development organizations continue to prevent the free flow of standards documents on the Internet. These documents should be free.

BACKGROUND

Natural language is a standard within a culture and usually evolves continually. Speed versus consensus is reflected in the arguments about whether popular, new terms are unacceptable jargon or whether they belong to proper language. A different type of common language comes from units of measurement. One of the earliest types of measurement concerned that of length. Length measurements were usually based on parts of the body. The first documented example is the Egyptian cubit that was derived from the length of the arm from the elbow to the outstretched fingertips. By 2500 BC this had been standardized in a royal master cubit made of black marble. In England units of measurement were not properly
standardized until the 13th century, though variations and abuses continued until long after that (Dictionary, 1999). Speed of some standardization efforts can be measured in millennia.

This chapter focuses on international standardization of information technology. The issues here are rather different from those experienced in the evolution of natural language standards. The analogy to units of measurement would not be far fetched in terms of the problems of consensus but the issues of speed are different. Information technology is changing at a rapid rate and requirements for standardization are special.

Consensus but not Speed

ISO is an independent organization for fostering international agreement on standards with a view to expanding international trade. ISO formally consists of national representatives only. To develop standards, ISO relies on a large number of volunteers who participate in more than one hundred Technical Committees. Each Technical Committee in turn relies on Working Groups. Working Groups develop recommendations as working drafts, then committee drafts, then draft international standards, and finally international standards (ISO, 1999). At each stage, people follow an arduous cycle of corresponding with one another, meeting face-to-face, and formal balloting. When each Working Group feels each text is good enough, the draft is forwarded through channels to the national standards bodies. Each member country places one vote at each stage. The ISO process from first correspondence to a published international standard typically takes years.

The scope of ISO standards is not limited to any particular area. ISO covers almost all standardization fields. If standards for screw threads are reconsidered by standards developers every five years, the market is satisfied that the standard is adequately maintained. For information technology standards such maintenance is too slow and too distant from market concerns. This means a process right for screws (there is in fact an entire Technical Committee of ISO devoted to screw threads) but not computing.

ISO has agreements with the national standards organizations that require those standards organizations to accept ISO's international standards. However, neither ISO nor the national standards organizations are in a position to mandate that industry uses the ISO standards. For instance, some years ago ISO initiated the Open Systems Interconnection (OSI) standard. OSI covers computer networking, and the American government initially felt that following OSI should be mandatory in government procurements of computer networking equipment. However, the success of the Internet, that did not specifically follow the OSI model, led the government to realize that adherence to the ISO standard approach was not cost-effective.

In partial recognition of the special character of information technology, ISO joined forces in 1987 with the International Electrotechnical Commission and created a Joint Technical Committee on Information Technology (called JTC1). However, JTC1 until recently had to follow the time-consuming steps and strict, copyright rules that other Technical Committees of ISO follow. In response to advances by other standards organizations, such as the Internet Engineering Task
Linguistic Qualities of International Standards
www.igi-global.com/article/linguistic-qualities-international-standards/2579?camid=4v1a