Chapter IX

The Socio-Pragmatics of IT Artefacts:
Reconciling the Pragmatic, Social, Semiotic, and Technical

Göran Goldkuhl
Linköping University & Jönköping International Business School, Sweden

Pär J. Ågerfalk
University of Limerick, Ireland, & Örebro University, Sweden

Abstract

There are many attempts to explain success and failure in information systems. Many of these refer to a purported sociotechnical gap. In this chapter, we develop an alternative approach that does not impose such a strong dichotomy, but regards social and technical rather as dimensions along which to study work practices. The developed theory involves not only the “social” and “technical” constructs but also other generic ones, namely “instrumental,” “semiotic,” and “pragmatic.” We call this theory “socio-instrumental pragmatism.” To illustrate the theoretical concepts introduced, we use an example brought from an extensive action research study, including the development of an information system in eldercare, developed through a participatory design approach.
Introduction

Development and implementation of an information system (IS) is a very demanding task, and many times the expectations from such endeavours are not met. Unexpected negative effects often arise while anticipated positive effects fail to appear. There are many attempts to explain IS failure (and, indeed, success) in general terms. Some of them refer to a sociotechnical gap—a gap between what is socially required and what is technically feasible (e.g., Ackerman, 2000). Such explanations tend to make a sharp differentiation between the social and the technical. For example in the sociotechnical tradition represented by Mumford and Weir (1979), there are discussions about balancing the technical system and the social system. This is built upon a view that computerised information systems are technical systems with social and organisational effects—a view that seems almost entirely to permeate mainstream IS research (see, for example, DeLone & McLean, 1992, 2003; Benbasat & Zmud, 2003). This is also in-line with the soft systems’ view that there is a “serving system” to support a “system to be served” (Champion & Stowell, 2002). There are criticisms towards such a conceptualisation. For example, Nurminen (1988, p. 82) writes “by removing the social dimension from the systems entity, we imply that the technical system is basically non-social.” In the same spirit, Goldkuhl and Lyytinen (1982) suggest that the traditional view of information systems as “technical systems with social implications” should be inverted to “social systems, only technically implemented.”

What are the grounds for such a view? An IS is not only a technical object; it is a technical object carrying information. Information—in order to be externalised and technically mediated through an IS—must be expressed in a language. From this follows that an IS, besides being technical, is also a kind of linguistic system (ibid; Winograd & Flores, 1986). Language is not only used for describing the world, it is also a part in constituting parts of the world, as pointed out by Mead (1934): “Language does not simply symbolise a situation or object which is already there in advance—it makes possible the existence or appearance of that situation or object, for it is part of the mechanism whereby that situation or object is created.” Since every IS uses language for purposes of communication and understanding, what Mead claims about language also counts for information systems.

Instead of a separation into a social realm (humans acting in the IS environment) and technical realm (the IS), another approach is proposed here—using “social” and “technical” as dimensions along which to study work practices. The theoretical way to proceed is to articulate a common theory for both the IS and its organisational context. The concepts of social and technical are however not found to be sufficient. The purpose of this chapter is to outline a theory appropriate for interpretation, description, explanation, and evaluation of the interaction between information systems and their organisational context. The developed theory involves not only the “social” and “technical” constructs but also other generic ones, namely “instrumental,” “semiotic,” and “pragmatic.” As we shall see in the following text, these constructs are
Related Content

Emotional Digitalization as Technology of the Postmodern: A Reflexive Examination from the View of the Industry
[www.igi-global.com/article/emotional-digitalization-technology-postmodern/2894?camid=4v1a](www.igi-global.com/article/emotional-digitalization-technology-postmodern/2894?camid=4v1a)

Factors Influencing Citizen Adoption of E-Government in Developing Countries: The Case of Jordan
[www.igi-global.com/article/factors-influencing-citizen-adoption-government/77917?camid=4v1a](www.igi-global.com/article/factors-influencing-citizen-adoption-government/77917?camid=4v1a)

Virtual Worlds and Online Videogames for Children and Young People: Promises and Challenges
[www.igi-global.com/chapter/virtual-worlds-and-online-videogames-for-children-and-young-people/136677?camid=4v1a](www.igi-global.com/chapter/virtual-worlds-and-online-videogames-for-children-and-young-people/136677?camid=4v1a)
Sociocultural Factors Influencing Online Instruction: A Latina Perspective
www.igi-global.com/article/sociocultural-factors-influencing-online-instruction/116752?camid=4v1a