Chapter 1.16

Knowledge Management in Healthcare

Sushil K. Sharma
Ball State University, USA

Nilmini Wickramasinghe
Cleveland State University, USA

Jatinder N.D. Gupta
University of Alabama in Huntsville, USA

ABSTRACT

Healthcare organizations are facing many challenges in the 21st Century due to changes taking place in global healthcare systems. Spiraling costs, financial constraints, increased emphasis on accountability and transparency, changes in education, growing complexities of biomedical research, new partnerships in healthcare and great advances in IT suggest that a predominant paradigm shift is occurring. This shift is necessitating a focus on interaction, collaboration and increased sharing of information and knowledge which is in turn leading healthcare organizations to embrace the techniques of Knowledge Management (KM) in order to create and sustain optimal healthcare outcomes. This chapter describes the importance of knowledge management systems for healthcare organizations and provides an overview of knowledge management technologies and tools that may be used by healthcare organizations.

INTRODUCTION

Knowledge Management (KM) is an essential tool in today’s emerging healthcare system. Hospitals that seek to deploy KM systems need to understand the human element in the process. Earlier, success factors were only restricted to a few healthcare variables such as patient care and cost, but over the years, technology (both clinical and administrative) has evolved as a differentiating variable, thus redefining the doctrines of competition and the administration of healthcare...
Knowledge Management in Healthcare

Knowledge Management (KM) is an emerging, interdisciplinary business model dealing with all aspects of knowledge within the context of the firm, including knowledge creation, codification, sharing and how these activities promote learning and innovation (Choo, 1998). Unfortunately there’s no universal definition of KM, just as there’s no agreement as to what constitutes knowledge in the first place (Beckman, 1999). For this reason, it’s best to think of KM in the broadest context:

KM is a discipline that promotes an integrated approach to identifying, managing, and sharing all of an enterprise’s information assets, including database, documents, policies and procedures, as well as unarticulated expertise and experience resident in individual workers (Wickramasinghe, 2003). There are many dimensions around which knowledge can be characterized such as storage media, accessibility, typology and hierarchy. Each of these dimensions is explained in this chapter (Brailer, 1999; Broadbent, 1998; Skyrme, 2001, 1999, 1998; Davenport & Prusak, 1997, 1998).

Knowledge Storage Media

There are several media in which knowledge can reside including: the human mind, an organization, a document and/or a computer. Knowledge in the mind is often difficult to access; organizational knowledge is often dispersed and distributed; document knowledge can range from free text to well-structured charts and tables; while computer knowledge can be formalized, sharable and often well structured and well organized. In order to effectively manage KM it is important to pay careful attention to the most useful storage media.
10 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage:
www.igi-global.com/chapter/knowledge-management-healthcare/26216?camid=4v1

This title is available in InfoSci-Books, InfoSci-Medical, Healthcare, and Life Science and Technology, Business-Technology-Solution, Communications, Social Science, and Healthcare. Recommend this product to your librarian:
www.igi-global.com/e-resources/library-recommendation/?id=1

Related Content

Quality and Reliability Aspects in Telehealth Systems
www.igi-global.com/chapter/quality-reliability-aspects-telehealth-systems/19951?camid=4v1a

Bioinformatics-Inspired Algorithms for 2D-Image Analysis—Application to Medical Images Part II: Images in Circular Format
www.igi-global.com/article/bioinformatics-inspired-algorithms-image-analysis/73693?camid=4v1a

Effects of Selective and Divided Attention on Audiovisual Interaction
Weiping Yang, Yulin Gao and Jinglong Wu (2013). Biomedical Engineering and Cognitive Neuroscience for Healthcare: Interdisciplinary Applications (pp. 311-319).
www.igi-global.com/chapter/effects-selective-divided-attention-audiovisual/69931?camid=4v1a

Classification of Brain MR Images Using Corpus Callosum Shape Measurements
www.igi-global.com/article/classification-of-brain-mr-images-using-corpus-callosum-shape-measurements/138227?camid=4v1a