Chapter 3.17

Picture Archiving and Communication System in Healthcare

Carrison KS Tong
Pamela Youde Nethersole Eastern Hospital and Tseung Kwan O Hospital, Hong Kong

Eric TT Wong
The Hong Kong Polytechnic University, Hong Kong

INTRODUCTION

Radiology is the branch of medicine that deals with the diagnostic and therapeutic applications of radiation. It is often used in X-rays in the diagnosis and treatment of a disease. Filmless radiology is a method of digitizing traditional films into electronic files that can be viewed and saved on a computer. This technology generates clearer and easier-to-read images, allowing the patient the chance of a faster evaluation and diagnosis. The time saved may prove to be a crucial element in the patient’s treatment process. With filmless radiology, images taken from various medical sources can be manipulated to enhance resolution, increasing the clarity of the image. Images can also be transferred internally within departments and externally to other locations such as the office of the patient’s doctor. This is made possible through the picture-archiving and communication system (PACS; Dreyer, Mehta, & Thrall, 2001), which electronically captures, transmits, displays, and saves images into digital archives for use at any given time. The PACS functions as a state-of-the-art repository for long-term archiving of digital images, and includes the backup and bandwidth to safeguard uninterrupted network availability. The objective of the picture-archiving and communication system is to improve the speed and quality of clinical care by streamlining radiological service and consultation. With instant access to images from virtually anywhere, hospital doctors and clinicians can improve their work processes and speed up the delivery of patient care. Besides making film a thing of the past, the likely benefits would include reduced waiting times for images and reports, and the augmented ability of clinicians since they can get patient information and act upon it much more quickly. The creation of a permanent, nondegradable archive will eliminate the loss of film and so forth. Today, the growing importance of PACS on the fight against highly infectious disease is also identified.

BACKGROUND

PACS (Huang, 2004) started with a teleradiology project sponsored by the U.S. Army in 1983. A follow-up project was the Installation Site for
Digital Imaging Network and Picture Archiving and Communication System (DIN/PACS) funded by the U.S. Army and administered by the MITRE Corporation in 1985. Two university sites were selected for the implementation—the University of Washington in Seattle and Georgetown University and George Washington University Consortium in Washington, DC—with the participation of Philips Medical Systems and AT&T. The U.S. National Cancer Institute funded one of UCLA’s first PACS-related research projects in 1985 under the title Multiple Viewing Stations for Diagnostic Radiology.

The early installations of PACS in public health-care institutions were in Baltimore Veterans Administration Medical Center (United States), Hammersmith Hospital (United Kingdom), and Samsung Medical Center (Korea). In Hong Kong, there was no PACS-related project until the establishment of Tseung Kwan O Hospital (TKOH) in 1998. The TKOH was a newly built 600-bed acute hospital with a hospital PACS installed for the provision of filmless radiological service. The design and management of the PACS for patient care will be discussed in this article. The TKOH was opened in 1999 with PACS installed. At the beginning, due to immature PACS technologies, the radiology service was operating with film printing. A major upgrade was done in 2003 for the implementation of server clustering, network resilience, liquid crystal display (LCD), smart card, and storage-area-network (SAN) technologies. This upgrade has greatly improved the reliability of the system. Since November 2003, TKOH has started filmless radiology service for the whole hospital. It has become one of the first filmless hospitals in the Greater China area (Seto, Tsang, Yung, Ching, Ng, & Ho, 2003; Tsou, Goh, Kaw, & Chee, 2003).

MAINT FOCUS OF THE ARTICLE

It certainly goes without saying that most equipment is designed for reliability, but breakdowns can still occur, especially when equipment is used in a demanding environment. A typical situation is what could be called a “single-point failure.” That is, the entire system fails if only one piece of equipment such as a network switch fails. If some of the processes that the system supports are critical or the cost of a system stop is too high, then building redundancy into the system is the way to overcome this problem. There are many different approaches, each of which uses a different kind of device, for providing a system with redundancy.

The continuous operation of a PACS in a filmless hospital for patient care is a critical task. The design of a PACS for such a system should be high speed, reliable, and user friendly (Siegel & Kolodner, 2001). The main frame of the design is avoiding the occurrence of any single point of failure in the system. This design includes many technical features. The technical features of the PACS installed in a local hospital include the archiving of various types of images, clustering of Web servers installed, redundancy provision for image distribution channels, and adoption of barcode and smart-card systems. All these features are required to be integrated for effective system performance and they are described below.

ARCHIVING OF MULTIPLE IMAGE TYPES

In order to make connections with different imaging modalities, a common international standard is important. The Digital Imaging and Communications in Medicine (DICOM) standard developed by
Related Content

Computational Models for the Analysis of Modern Biological Data
Tuan D. Pham (2009). Handbook of Research on Systems Biology Applications in Medicine (pp. 117-125).
www.igi-global.com/chapter/computational-models-analysis-modern-biological/21528?camid=4v1a

Computer-Aided Fetal Cardiac Scanning using 2D Ultrasound: Perspectives of Fetal Heart Biometry
www.igi-global.com/article/computer-aided-fetal-cardiac-scanning/73690?camid=4v1a

Care2x in Medical Informatics Education
www.igi-global.com/chapter/care2x-medical-informatics-education/26276?camid=4v1a

EEG Based Thought Translator: A BCI Model for Paraplegic Patients
www.igi-global.com/article/eeg-based-thought-translator/96828?camid=4v1a