Chapter II

Authentication Techniques for UDDI Registries

Elisa Bertino, Purdue University, USA
Barbara Carminati, University of Insubria at Varese, Italy
Elena Ferrari, University of Insubria at Varese, Italy

Abstract

A Web service is a software system designed to support interoperable application-to-application interactions over the Internet. Web services are based on a set of XML standards, such as Web services description language (WSDL), simple object access protocol (SOAP) and universal description, discovery and integration (UDDI). A key role in the Web service architecture is played by UDDI registries, i.e., a structured repository of information that can be queried by clients to find the Web services that better fit their needs. Even if, at the beginning, UDDI has been mainly conceived as a public registry without specific facilities for security, today security issues are becoming more and more crucial, due to the fact that data published in UDDI registries may be highly strategic and sensitive. In this chapter, we focus on authenticity issues, by proposing a method based on Merkle hash trees, which does not require the party managing the UDDI to be trusted wrt authenticity. In the chapter, besides giving all the details of the proposed solution, we show its benefit wrt standard digital signature techniques.
Introduction

A Web service is a software system designed to support interoperable application-to-application interactions over the Internet. Web services are based on a set of XML standards, such as Web services description language (WSDL) (Christensen, Curbera, Meredith, & Weerawarana, 2001), simple object access protocol (SOAP) (Mitra, 2003), and universal description, discovery and integration (UDDI) (Clement, Hately, von Riegen, & Rogers, 2002). A key role in the Web service architecture is played by UDDI registries. UDDI is an XML-based registry with the primary goal of making widely available information on Web services. It thus provides a structured and standard description of the Web service functionalities as well as searching facilities to help in finding the provider(s) that better fit client requirements. In the beginning, UDDI was mainly conceived as a public registry without specific facilities for security. Today, security issues are becoming more and more crucial, due to the fact that data published in UDDI registries may be highly strategic and sensitive. In this respect, a key issue regards authenticity: For a client querying a UDDI registry it should be possible to first verify that the received answer is actually originated at the claimed source, and, then, that the party managing the UDDI registry has not maliciously modified some of answer portions before returning them to the client. To deal with this issue the current version of UDDI specifications allows one to optionally sign some of the elements in a registry, according to the W3C XML signature syntax (Eastlake, Reagle, & Solo, 2001).

UDDI can be implemented according to either a third party or two party architecture. A third party architecture consists of a service provider, that is, the owner of the services, the service requestors, that is, the parties who request the services, and a discovery agency, that is, the UDDI registry, which is responsible for managing (a portion of) the service provider information and for answering service requestors queries. By contrast, in a two party architecture, there is no distinction between the service provider and the discovery agency. Authenticity issues are particularly crucial when UDDI registries are managed according to a third party architecture. For this reason, in the chapter we focus on authenticity issues for third party implementations of UDDI. In this architecture the main problem is how the owner of the services can ensure the authenticity of its data, even if the data are managed by a third party (i.e., the discovery agency). The most intuitive solution is that of requiring the discovery agency to be trusted with respect to authenticity. However, the main drawback of this solution is that large Web-based systems cannot be easily verified to be trusted and can be easily penetrated. For this reason, in this chapter, we propose an alternative approach, previously developed by us for generic XML data distributed, according to a third party architecture (Bertino, Carminati, Ferrari, Thuraisingham, & Gupta, 2004). The main benefit of the proposed solution is that it does not require the discovery agency to be trusted wrt authenticity.
Related Content

Interoperability Among Heterogeneous Services: The Case of Integration of P2P Services with Web Services
[www.igi-global.com/article/interoperability-among-heterogeneous-services/3129?camid=4v1a](www.igi-global.com/article/interoperability-among-heterogeneous-services/3129?camid=4v1a)

An Optimal and Complete Algorithm for Automatic Web Service Composition
[www.igi-global.com/article/optimal-complete-algorithm-automatic-web/70387?camid=4v1a](www.igi-global.com/article/optimal-complete-algorithm-automatic-web/70387?camid=4v1a)

QoS-Aware and Federated Enhancement for UDDI
[www.igi-global.com/article/qos-aware-federated-enhancement-uddi/3041?camid=4v1a](www.igi-global.com/article/qos-aware-federated-enhancement-uddi/3041?camid=4v1a)
DSCWeaver: Synchronization-Constraint Aspect Extension to Procedural Process Specification Languages
www.igi-global.com/chapter/dscweaver-synchronization-constraint-aspect-extension/41538?camid=4v1a