Chapter X
Computational Intelligence to Speed-Up Multi-Objective Design Space Exploration of Embedded Systems

Giuseppe Ascia
Università degli Studi di Catania, Italy

Vincenzo Catania
Università degli Studi di Catania, Italy

Alessandro G. Di Nuovo
Università degli Studi di Catania, Italy

Maurizio Palesi
Università degli Studi di Catania, Italy

Davide Patti
Università degli Studi di Catania, Italy

ABSTRACT

Multi-Objective Evolutionary Algorithms (MOEAs) have received increasing interest in industry, because they have proved to be powerful optimizers. Despite the great success achieved, MOEAs have also encountered many challenges in real-world applications. One of the main difficulties in applying MOEAs is the large number of fitness evaluations (objective calculations) that are often needed before a well acceptable solution can be found. In fact, there are several industrial situations in which both fitness evaluations are computationally expensive and, meanwhile, time available is very low. In this applications efficient strategies to approximate the fitness function have to be adopted, looking for a trade-off between optimization performances and efficiency. This is the case of a complex embedded
INTRODUCTION

Multi-Objective Evolutionary Algorithms (MOEAs) have received increasing interest in industry, because they have proved to be powerful optimizers. Despite the great success achieved, however, MOEAs have also encountered many challenges in real-world applications. One of the main difficulties in applying MOEAs is the large number of fitness evaluations (objective calculations) that are often needed before an acceptable solution can be found. There are, in fact, several industrial situations in which fitness evaluations are computationally expensive and the time available is very short. In these applications efficient strategies to approximate the fitness function have to be adopted, looking for a trade-off between performance and efficiency. This is the case in designing a complex embedded system, where it is necessary to define an optimal architecture in relation to certain performance indexes while respecting strict time-to-market constraints.

An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is specifically designed for a particular kind of application device. Industrial machines, automobiles, medical equipment, cameras, household appliances, airplanes, vending machines, and toys (as well as the more obvious cellular phone and PDA) are among the myriad possible hosts of an embedded system. In fact, the embedded systems market is without doubt of great economic importance nowadays. The global embedded systems market is expected to be worth nearly US$88 billion in 2009, including US$78 billion of hardware and US$3.5 billion of software, according to a Canadian research firm.

For some years now the market has far exceeded that of PC systems. To have an idea of how embedded systems are pervading our daily lives it is sufficient to recall, for example, that there are more than 80 software programs for driving, brakes, petrol control, street finders and air bags installed in the latest car models. As compared with a general-purpose computing system, embedded systems are much more cost sensitive and have strict time-to-market constraints.

The design flow of an embedded system features the combined use of heterogeneous techniques, methodologies and tools with which an architectural template is gradually refined step by step on the basis of functional specifications and system requirements. Each phase in the design...
Related Content

An Enhanced Petri Net Model to Verify and Validate a Neural-Symbolic Hybrid System
www.igi-global.com/article/enhanced-petri-net-model-verify/34087?camid=4v1a

Estimating which Object Type a Sensor Node is Attached to in Ubiquitous Sensor Environment
www.igi-global.com/article/estimating-object-type-sensor-node/39107?camid=4v1a

Clustering-Based Stability and Seasonality Analysis for Optimal Inventory Prediction
www.igi-global.com/chapter/clustering-based-stability-and-seasonality-analysis-for-optimal-inventory-prediction/97051?camid=4v1a

Crowdfunding to improve Environmental Projects’ Logistics
www.igi-global.com/chapter/crowdfunding-improve-environmental-projects-logistics/64926?camid=4v1a