Chapter VI
R2–IBN:
Argumentation Based Negotiation Framework for MAIS–E2 Model

Lobna Hsairi
SOIE: Institut Supérieur de Gestion de Tunis, Tunisie

Khaled Ghédira
SOIE: Institut Supérieur de Gestion de Tunis, Tunisie

Adel M. Alimi
REGIM: Ecole Nationale d'Ingénieurs de Sfax, Tunisie

Abdellatif BenAbdelhafid
CERENE-SILI: Université du Havre, France

ABSTRACT

In the age of information proliferation, openness, open information management, interconnectivity, collaboration and communication advances, extended enterprises must be up to date to the new strategic, economic and organizational structures. Consequently, intelligent software based on agent technology emerges to improve system design, and to increase enterprise competitive position as well. The competitiveness is based on the information management, cooperation, collaboration and interconnectivity. Thus, within these interconnectivity and cooperation, conflicts may arise. The automated negotiation plays a key role to look for a common agreement. Argumentation theory has become an important topic in the field of Multi-Agent Systems and especially in the negotiation problem. In this chapter, first, the proposed model MAIS–E2 (Multi-Agent Information System for an Extended Enterprise) is presented. Then an argumentation based negotiation framework: Relationship-Role and Interest Based Negotiation (R^2-IBN) framework is presented, and within this framework, the authors focused mainly on, argument generation module via inference rules and argument selection module via fuzzy logic.
INTRODUCTION

Nowadays, a number of new concepts have been proposed, e.g., Virtual Organization, Supply Chain Management, Virtual and Extended Enterprise, etc (Tsung-Yi, 2008; Martinez, Fouletier, Park & Favrel, 2001). An extended enterprise is the cooperation, collaboration and interconnectivity of legally independent enterprises, institutions, or individuals. The extended enterprise will be characterized by intensively concurrent engineering based on open information both in management and technologies such as digitalization, computer network, and artificial intelligence (Tsung-Yi, 2008). The intelligent software agent technology provides a natural way to overcome such problems (Martinez, Fouletier, Park & Favrel, 2001). Agents help to capture individual interests, local decision making using incomplete information, autonomy, responsiveness, robustness, modular and distributed. A Multi-Agent System (MAS), as a society of autonomous agents, is an inherently open and distributed system. It is made up of a group of agents combined with each other to solve a common problem cooperatively. In addition, negotiation is a key form of interaction in systems composed of multiple autonomous agents (Bench-Capon & Dunne, 2007). The automated negotiation plays a key role in sharing information and resources to look for a common agreement. The research literature proves that Argumentation Based Negotiation (ABN) is an effective means of resolving conflicts in MAS (Bench-Capon & Dunne, 2007; Hsairi, Ghédira, Alimi & Ben Abdelhafid, 2008). Besides, the fuzzy logic of Zadeh (1965) opens new horizons in the vast world of information analysis and treatment. One of the present tendencies in the fuzzy modeling is generating models that take into consideration two fundamental conditions at the same time: interpretability (which is the description capacity of the modeled systems behavior) precision and fidelity of model towards the original system (Casillas, Cordòn, Herrera & Magdalena, 2003).

In this chapter, in the first place, we present our research efforts in developing a MAS architecture named Multi-Agent Information Systems for an Extended Enterprise (MAIS-E\(^2\)). Then, we define the Relationship-Role and Interest Based Negotiation (R\(^2\)-IBN) framework. R\(^2\)-IBN framework is an extension of an existing one namely IBN (Rahwan, Sonenberg & Dignum, 2004). In this chapter, we present mainly the extensions made in two modules: the argument generation module via inference rules and argument selection module via fuzzy rules based system as an intelligent method in order to better estimate the desirability degree of the argument to send.

The remainder of this chapter is structured as follows: the background section describes extended enterprises, reviews negotiation approaches and related works. The MAIS-E\(^2\): An Intelligent Model Toward An Inter-Enterprise Cooperation section presents our research efforts and experiences in developing a multi-agent model for an Extended Enterprise. The R\(^2\)-IBN: Argumentation Framework section describes our proposed argumentation based negotiation framework. Future Trends section presents emerging tendencies. Finally, in the conclusion section remarks and perspectives are given.

BACKGROUND

In this section, we first describe extended enterprises, then, we review negotiation approaches and finally, we review related works.
Related Content

Understanding the "Mommy Tracks" : A Framework for Analyzing Work-Family Balance in the IT Workforce
www.igi-global.com/article/understanding-mommy-tracks/1290?camid=4v1a

www.igi-global.com/chapter//119576?camid=4v1a

Reliability Growth Models for Defect Prediction
www.igi-global.com/chapter/reliability-growth-models-defect-prediction/14058?camid=4v1a

Economic Intelligence Information and Process in Shipping Companies in Morocco: The Case of TangerMed Area