Chapter XIX
Information Security Effectiveness: Conceptualization and Validation of a Theory

Kenneth J. Knapp
U.S. Air Force Academy, USA

Thomas E. Marshall
Auburn University, USA

R. Kelly Rainer, Jr.
Auburn University, USA

F. Nelson Ford
Auburn University, USA

ABSTRACT

Taking a sequential qualitative-quantitative methodological approach, the authors propose and test a theoretical model that includes four variables through which top management can positively influence security effectiveness: user training, security culture, policy relevance, and policy enforcement. During the qualitative phase of the study, the authors generated the model based on textual responses to a series of questions given to a sample of 220 information security practitioners. During the quantitative phase, we analyzed survey data collected from a sample of 740 information security practitioners. After data collection, we analyzed the survey responses using structural equation modeling and found evidence to support the hypothesized model. They also tested an alternative, higher-order factor version of the original model that demonstrated an improved overall fit and general applicability across the various demographics of the sampled data. They then linked the finding of this study to existing top management support literature, general deterrence theory research, and the theoretical notion of the dilemma of the supervisor.
INTRODUCTION

With modern national economies dependent upon information technology for survival, the need to protect information and mitigate risk has become paramount. One can find evidence of poor information security in the frequency of media reports about security breaches and from published survey data. As of this writing, media headlines about security incidents have become a regular occurrence with one of the more embarrassing breaches occurring when a laptop went missing that contained sensitive information of millions of U. S. veterans and military personnel (Files, 2006). Multiple national surveys confirm a high number of attacks against organizational information resources (Bagchi & Udo, 2003; Computer Emergency Response Team (CERT), 2004; Gordon, Loeb, Lucyshyn, & Richardson, 2005). Between 1998 and 2003, the number of reported incidents to the U.S. Computer Emergency Response Team (CERT) has nearly doubled each year with 137,529 reported incidents in 2003 alone. An Ernst and Young analysis found that security incidents can cost companies between $17 and $28 million each occurrence (Garg, Curtis, & Halper, 2003). Because incidents are frequent and costly, management must take security seriously to protect organizational information.

Noting the disappointing state of information systems (IS) security in organizations, Dhillon & Backhouse (2001) called for more empirical research to develop key principles that will help in the management of IS security. Despite the call, few studies have developed and empirically tested theoretical models of IS security (Kotulic & Clark, 2004). In some studies, the sensitive nature of the security topic (Straub & Welke, 1998) impeded the collection of a sufficient sample willing to participate in the research (Kotulic & Clark, 2004). The few empirical studies that contained information security effectiveness as a dependent variable used general deterrence theory as a research foundation (Kankanhalli, Hock-Hai, Bernard, & Kwok-Kee, 2003; Straub, 1990). Sensing that other variables in addition to those related to deterrence theory might significantly predict information security effectiveness, we engaged in a study to develop and empirically test a model of effectiveness that is not based on predetermined independent variables.

Using a sequential quantitative-qualitative methodological approach, we developed and tested a theoretical model that illustrates four practices through which top management can positively influence security effectiveness. The role of management support has been identified as a critical success factor in a wide area of information system implementations and IT projects (Jasperson et al., 2002; Sharma & Yetton, 2003). Management support has been called the variable most frequently hypothesized as contributing to IS success but empirical analysis has limited modeling ‘success’ as a simple linear function of management support (Sharma & Yetton, 2003, p. 535). Our model offers a more comprehensive view by including four critical mediator variables through which management can improve security effectiveness: user training, security culture, policy relevance, and policy enforcement. By doing so, the theoretical model proposed in this study provides practical help to professionals and researchers who seek to advance the managerial effectiveness of information security programs.

The following methodology section describes our qualitative approach used to conceptualize the theoretical model and the survey instrument to test the model. Using survey data, we then quantitatively test the model using structural equation modeling (SEM). We also proposed and analyzed an alternate structural model. To add credibility to the results of this study, the discussion section links our findings to related theory including previous IS studies based on general deterrence theory. We close our paper with limitations, implications and a conclusion.
Related Content

Safety Measures for Social Computing in Wiki Learning Environment
www.igi-global.com/article/safety-measures-social-computing-wiki/68818?camid=4v1a

Privacy Preservation in Information System
www.igi-global.com/chapter/privacy-preservation-in-information-system/99450?camid=4v1a

A Keystroke Biometric System for Long-Text Input
www.igi-global.com/article/keystroke-biometric-systemfor-long-text/43056?camid=4v1a

Distributed Monitoring: A Framework for Securing Data Acquisition
www.igi-global.com/chapter/distributed-monitoring-framework-securing-data/73123?camid=4v1a