Chapter XV

A Remotely Accessible Embedded Systems Laboratory

Steve Murray, The University of Technology Sydney, Australia
Vladimir Lasky, The University of Technology Sydney, Australia

Abstract

To teach modern embedded systems including operating systems in a meaningful way, a moderately sophisticated processor is required to demonstrate many key concepts, such as multitasking, multithreading, a structured and abstracted hardware management layer, communications utilising various protocols over network interfaces, and memory resident file systems. Unfortunately, high-end 32-bit embedded systems processors capable of supporting these facilities are expensive compared to conventional 8-bit and 16-bit targets, and it is not feasible to acquire a large number of them to house in a laboratory in an effort to enable practical exercises for over 100 students. This chapter describes the development and use of a remotely accessible embedded systems laboratory that uses a small number of 32-bit development systems and makes them available to students over the Internet.
Learning Objectives

After completing this chapter, you will be able to:

• Discuss the usefulness of a remotely accessible embedded systems laboratory in teaching and learning contexts.
• Define the following key terms: embedded computer system, multitasking, and multithreading.
• Suggest further enhancements to practical activities proposed in the chapter.

Introduction

In 2001, the Information and Communications Group in the Faculty of Engineering at the University of Technology, Sydney, decided — after surveying industrial trends — to focus upon embedded computer systems as a basis for case studies and application areas in which to demonstrate theoretical concepts. In particular the undergraduate subject 48450 Real-Time Operating Systems strove to differentiate itself from computer science and IT-styled subjects in that area by using embedded computer system hardware platforms. To demonstrate many of the concepts that are essential to a modern operating system, for example, multitasking, multithreading, a structured and abstracted hardware management layer, communications utilising various protocols over network interfaces, and memory resident file systems, a moderately sophisticated processor is required. Unfortunately, high-end 32-bit embedded systems processors capable of supporting these facilities are expensive when compared to conventional 8-bit and 16-bit targets, and it is not feasible to acquire a large number of them to house in a laboratory in an effort to enable practical exercises for over 100 students. Instead, a remotely accessible embedded systems laboratory has been constructed which uses a small number of 32-bit development systems and makes them available to students over the Internet. Students can use them in the conventional way following a development path that commences with cross-development and concludes with testing on the 32-bit target and viewing the results.
The Blended Learning Ecosystem of an Academic Institution in Greece


[www.igi-global.com/article/blended-learning-ecosystem-academic-institution/46159?camid=4v1a](www.igi-global.com/article/blended-learning-ecosystem-academic-institution/46159?camid=4v1a)