Chapter XIII
Designing Pervasive and Multimodal Interactive Systems: An Approach Built on the Field

Barbara R. Barricelli
Università degli Studi di Milano, Italy

Piero Mussio
Università degli Studi di Milano, Italy

Marco Padula
Istituto per le Tecnologie della Costruzione – Consiglio Nazionale delle Ricerche, Italy

Andrea Marcante
Università degli Studi di Milano, Italy

Loredana Parasiliti Provenza
Università degli Studi di Milano, Italy

Paolo L. Scala
Istituto per le Tecnologie della Costruzione – Consiglio Nazionale delle Ricerche, Italy

ABSTRACT

This chapter presents a participatory and evolutionary methodology for pervasive and multimodal interactive systems design that is being developed capitalizing experiences from different target applicative domains. The methodology supports collaborative and evolutionary design of an interactive system; it considers usability problems that users face during the interaction; it is based on a network of software environments, conceived in analogy with the workshop of an artisan, each one customizable to and tailorible by users belonging to different cultures. The requirements, design issues, and a proposal of the architecture of the software environment will be discussed highlighting their pervasiveness, multimodality, and interactivity, the ability offered to users to coordinate desktop and mobile devices, and to access a shared knowledge base. The architecture has been defined and revised exploiting experience gained from different case studies that will be illustrated. The novelty of the approach is that the methodology sprang from empirical experience got by handling problems faced on the field. In the chapter, specific aspects of the presented approach are discussed in relation to the state of the art.

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.
INTRODUCTION

The experiences gained from the field in the development of pervasive and multimodal interactive systems led to the definition of a pragmatic approach to virtual systems design that considers the various phenomena characterizing the Human-Computer Interaction (HCI) process (Costabile et al., in press; Costabile, Fogli, Mussio, & Piccinno, 2006): the communication gap between designers and users, tool grain, user diversity, implicit information, tacit knowledge and co-evolution of systems and users. The approach adopts the Software Shaping Workshop (SSW) methodology introduced by Costabile, Fogli, Mussio, and Piccinno (2007). According to the SSW methodology, the design process is carried out by an interdisciplinary design team that includes different stakeholders such as software engineers, HCI experts, and domain experts (Fogli, Marcante, Mussio, & Parasiliti Provenza, 2007). The methodology provides the design team with virtual environments that permit to study, prototype and develop the environment that will be adopted by end users. The virtual environments are tailor able, customizable and adaptive to the context of activity and to community’s culture and language. The SSW methodology offers an evolutionary technique for system prototyping in which users can customize and evolve their own workshop. SSWs are virtual interactive environments, which are organized in a network, able to coordinate desktop and mobile devices to allow users to work on a shared knowledge base. The network architecture will be illustrated on the base of the experience gained from different case studies; its accessibility, adaptability, device adaptivity and localization to the specific culture and skills of users will be particularly focused. Localization is a crucial issue because people who use interactive systems for supporting their daily work have different culture, skills, languages, physical abilities and roles and they perform their activities in different contexts. The implemented multimodal interactive environment permits experts to face the problems related to their activity, to update and manage a shared knowledge base and to adapt and evolve their virtual work environment by adding tools becoming unwitting programmer.

The novelty of the approach lies in the fact that it is based on practical experience gained on the operative field; this maintains a conceptual connection to real problems and emphasizes the need to support the different actors in their daily work considering the working context, the activities to be performed and the user’s culture.

The chapter is organized into five sections. The first section concerns related works. The SSW methodology section presents the design approach, introducing some considerations about the phenomena affecting the HCI process. The third section deals with the system architecture. The fourth section illustrates the annotation primitive operator. The fifth section describes the experiences gained on the field by illustrating several case studies: different scenarios are introduced in which experts have to afford complex problems (e.g. diagnoses, territorial portal organization, tourist guides organization, yard management) in a collaborative asynchronous way and using different devices (e.g. desktop PC, PDAs) to access their SSW from everywhere and in different working contexts. The implemented multimodal interactive environment permits experts to face the problems related to their activity, to update and manage a shared knowledge base and to adapt and evolve their virtual work environment by adding tools becoming unwitting programmer.

RELATED WORKS

The SSW methodology has been influenced by the work performed in EUD-Net, the network of Excellence on End-User Development (EUD), funded by the European Commission during 2002 and 2003 (http://giove.cnue.cnr.it/eud-net.htm). The term EUD indicates the active participation