Chapter 2.4
Designing Pervasive and Multimodal Interactive Systems: An Approach Built on the Field

Barbara R. Barricelli
Università degli Studi di Milano, Italy

Piero Mussio
Università degli Studi di Milano, Italy

Marco Padula
Istituto per le Tecnologie della Costruzione – Consiglio Nazionale delle Ricerche, Italy

Andrea Marcante
Università degli Studi di Milano, Italy

Loredana Parasiliti Provenza
Università degli Studi di Milano, Italy

Paolo L. Scala
Istituto per le Tecnologie della Costruzione – Consiglio Nazionale delle Ricerche, Italy

INTRODUCTION

The experiences gained from the field in the development of pervasive and multimodal interactive systems led the authors to the definition of a pragmatically approach to virtual systems design that considers the various phenomena characterizing the Human-Computer Interaction (HCI) process (Costabile et al., in press; Costabile, Fogli, Mussio, & Piccinno, 2006): the communication gap between designers and users, tool grain, user diversity, implicit information, tacit knowledge and co-evolution of systems and users. The approach adopts the Software Shaping Workshop (SSW) methodology introduced by Costabile, Fogli, Mussio, and Piccinno (2007). According to the SSW methodology, the design process is carried out by an interdisciplinary design team that includes different stakeholders such as software engineers, HCI experts, and domain experts (Fogli, Marcante, Mussio, & Parasiliti Provenza, 2007). The methodology provides the design team...
Designing Pervasive and Multimodal Interactive Systems

with virtual environments that permit to study, prototype and develop the environment that will be adopted by end users. The virtual environments are tailorable, customizable and adaptive to the context of activity and to community’s culture and language. The SSW methodology offers an evolutionary technique for system prototyping in which users can customize and evolve their own workshop. SSWs are virtual interactive environments, which are organized in a network, able to coordinate desktop and mobile devices to allow users to work on a shared knowledge base. The network architecture will be illustrated on the base of the experience gained from different case studies; its accessibility, adaptability, device adaptivity and localization to the specific culture and skills of users will be particularly focused. Localization is a crucial issue because people who use interactive systems for supporting their daily work have different culture, skills, languages, physical abilities and roles and they perform their activities in different contexts. The implemented multimodal interactive environment permits experts to face the problems related to their activity, to update and manage a shared knowledge base and to adapt and evolve their virtual work environment by adding tools becoming unwitting programmer.

RELATED WORKS

The SSW methodology has been influenced by the work performed in EUD-Net, the network of Excellence on End-User Development (EUD), funded by the European Commission during 2002 and 2003 (http://giove.cnue.cnr.it/eud-net.htm). The term EUD indicates the active participation of end users in the software development process: this can range from providing information about requirements, use cases, and tasks, including participatory design, to activities such as customization, tailoring, and co-evolution. A system acceptable by its users should have a gentle slope of complexity: this means that it should avoid big steps in complexity and keep a reasonable trade-off between ease-of-use and functional complexity. For example, systems might offer end users different levels of complexity in performing EUD activities, going from simply setting parameters, to integrating existing components, up to extending the system by developing new components (Myers, Smith, & Horn, 1992; Wulf and Golombek, 2001). The SSW methodology encompasses all the three levels of tailoring (customization, integration, and extension) proposed by Mørch (1997). It also takes into consideration the results in Mackay (1991) and in Nardi (1993), where empirical studies are
20 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage: www.igi-global.com/chapter/designing-pervasive-multimodal-interactive-systems/37790?camid=4v1

This title is available in InfoSci-Books, Business-Technology-Solution, InfoSci-Social Technologies, InfoSci-Social Technologies, Communications, Social Science, and Healthcare, InfoSci-Select, InfoSci-Social Sciences and Online Behavior. Recommend this product to your librarian: www.igi-global.com/e-resources/library-recommendation/?id=1

Related Content

Ubiquitous Eco Cities: Telecommunication Infrastructure, Technology Convergence and Urban Management
Tan Yigitcanlar and Jung Hoon Han (2010). *International Journal of Advanced Pervasive and Ubiquitous Computing* (pp. 1-17). www.igi-global.com/article/ubiquitous-eco-cities/43583?camid=4v1a

SVM Parameter Optimization based on Immune Memory Clone Strategy and Application in Bus Passenger Flow Counting

Improving Direction-Giving Through Utilization of an RFID-Enabled Kiosk

Pervasive iTV and Creative Networked Multimedia Systems