Chapter 4.5
RFID as the Critical Factor for Superior Healthcare Delivery

A. Dwivedi
University of Hull, UK

T. Butcher
University of Hull Logistics Institute (UHLI), UK

INTRODUCTION

Innovations in information and communication technologies (ICTs) have transformed the manner in which healthcare organizations function. Applications of concepts such as data warehousing and data mining have exponentially increased the amount of information that a healthcare organization has access to. Work flow and associated Internet technologies are being seen as instruments to cut administrative expenses. Specifically designed ICT implementations, such as work flow tools, are being used to automate the electronic paper flow in a managed care operation, thereby cutting administrative expenses (Dwivedi, Bali, & Naguib, 2005, p. 44; Latamore, 1999).

These recent innovations in the use of ICT applications in a healthcare context have altered the manner in which healthcare institutions exploit clinical and nonclinical data. The pendulum has shifted from the early 1980s, wherein the emphasis of ICT solutions for healthcare was on storage of data in an electronic medium, the prime objective of which was to allow exploitation of this data at a later point in time. As such, most of the early 1980s ICT applications in healthcare were built to provide support for retrospective information retrieval needs and, in some cases, to analyze the decisions undertaken. Clinical data that was traditionally used in a supportive capacity for historical purposes has today become an opportunity that allows healthcare stakeholders to tackle problems before they arise (Dwivedi et al., 2005).

However, simultaneously, a number of studies have noted that most information in healthcare is stored in silos, which do not interact efficiently with each other. Kennedy (1995, p. 85) has quoted Keever (a healthcare management executive) who notes that "Healthcare is the most disjointed industry … in terms of information exchange.…"
RFID as the Critical Factor for Superior Healthcare Delivery

Every hospital, doctor, insurer and independent lab has its own set of information, and … no one does a very good job of sharing it.”

This problem is being further acerbated by the fact that healthcare managers are being forced to examine costs associated with healthcare and are under increasing pressure to discover approaches that would help carry out activities better, faster, and cheaper (Davis & Klein, 2000; Dwivedi, Bali, James, & Naguib, 2001; Dwivedi et al., 2005; Latamore, 1999). Consequently, the expectations from modern IT applications in healthcare are for applications which support the transfer of information with context. This, in turn, has led to the emergence of clinical information systems that are led by mobile computing technologies (Dwivedi, Bali, & Naguib, 2007; Dwivedi, Wickramasinghe, Bali, Naguib, & Goldberg, 2007; Meletis, Dwivedi, Gritzalis, Bali, & Naguib, 2006).

BACKGROUND

The last decade has seen the rapid emergence and acceptance of healthcare information systems that support the concept of telemedicine and use technologies like Personal Digital Assistant (PDA), Radio Frequency Identification (RFID) and other mobile computing technologies.

This trend has also been supported by a longitudinal survey (see Table 1) of over 200 U.S. healthcare organisations carried over a three year period, from 2000 to 2002 (Morrissey, 2000, 2001, 2002). As seen in Table 1, clinical information systems in conjunction with mobile computing have become priority areas for healthcare institutions (see Table 1).

Modern day IT applications in healthcare, centred on mobile computing devices like PDA, RFID, and wireless local area network (WLAN)

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of healthcare organizations surveyed</td>
<td>224 healthcare organizations</td>
<td>212 healthcare organizations</td>
<td>255 healthcare organizations</td>
</tr>
<tr>
<td>Clinical Use of Web technology (Intranets)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60% - felt that could IT could facilitate data exchange among caregivers, that is, physician ordering of tests and access to test results</td>
<td>Low interest in maintaining a patient’s personal health record accessible via the WWW and matching patients with clinical research. However there is renewed importance of addressing changes in this area due to regulatory obligations</td>
<td>Despite acknowledging that medication interaction and dosing alerts are possible within most IS - implementation has not commenced. The few organizations who had made big investments in different HIS (EPR and pharmacy) are reporting substantial returns</td>
<td></td>
</tr>
<tr>
<td>General Uses of Web and Intranet technology</td>
<td>Limited use as shown by the following: 15% - to share clinical guidelines 13% - to access multiple databases simultaneously 33% - as a bridge to other information systems 40% - for network wide communication of any kind</td>
<td>Some early success from linking “billing and insurance-query operations to payers via the Web” “Significant interest …in using the Web to improve data exchange with physicians and their office staff” About 50% indicated that they had no plans to try anything Web-related in the care-management area</td>
<td>33% - Using existing clinical and financial information sources to construct data repositories so as to that help spot trends and improve decision-making Further 22% are working to implement such practices whilst about 13% plan to start implementation of similar activities within a year</td>
</tr>
</tbody>
</table>
Related Content

Automation Selective Monitoring Base on University Training and Research Satellite Receiver Teleport
www.igi-global.com/article/automation-selective-monitoring-base-on-university-training-and-research-satellite-receiver-teleport/138591?camid=4v1a

Time Series Forecasting as a Measure
www.igi-global.com/article/time-series-forecasting-as-a-measure/93584?camid=4v1a

A Learning Object Recommendation System: Affective-Recommender
www.igi-global.com/chapter/a-learning-object-recommendation-system/92947?camid=4v1a

Identifying Disease Genes Based on Functional Annotation and Text Mining
Fang Yuan, Mingliang Li and Jing Li (2011). *International Journal of Advanced Pervasive and Ubiquitous Computing* (pp. 45-54).
www.igi-global.com/article/identifying-disease-genomes-based-functional/59711?camid=4v1a