Mass deployment of radio-frequency identification (RFID) technology is now becoming feasible for a wide variety of applications ranging from medical to supply chain and retail environments. Its main drawback until recently was high production costs, which are now becoming lower and acceptable. But due to inherent constraints of RFID technology (in terms of limited power and computational resources) these devices are the subject of intensive research on how to support and improve increasing demands for security and privacy. This chapter therefore focuses on security and privacy issues by giving a general overview of the field, the principles, the current state of the art, and future trends. An improvement in the field of security and privacy solutions for this kind of wireless communications is described as well.
items (in containers) can be scanned together, while each item can be uniquely identified and traced. These properties give RFID technology significant advantages over existing bar-code systems that currently serve for low level, operational acquisition of data in the above mentioned business environments.

These appealing properties also have drawbacks, many of them in the area of security and privacy. But as RFID is already finding its place in contemporary information systems (ISs), these issues need to be addressed seriously, which is the goal of this chapter. In the second section, the background of RFID technology is given. In the third section, threats are described and countermeasures are given. In the fourth section anticipated future trends are discussed. There is a conclusion in the fifth section, while the chapter ends with references and key definitions.

BACKGROUND OVERVIEW

Some definitions have to be given first. One basic definition in the area of computer (communications) security states that security means minimization of vulnerabilities of assets and resources (ISO, 1989). *Wireless security* thus means minimization of vulnerabilities of assets and resources when communicating information in electro-magnetic media through a free-space environment. Finally, *RFID technology* will be defined as wireless identification technology which operates on radio frequencies and deploys low-cost ICs.

A model of RFID environment is described in Figure 1. It consists of *tags* (also called responders) and *readers* (also called transceivers). This is the front-end of RFID applications, which have their back-end in database management systems, where they are integrated with the rest of the IS (see Figure 1). It is generally assumed that RFID security and privacy is concerned with the front-end part (the left-hand side of the dashed vertical line in Figure 1). This is actually the part that is covered by the reader’s signal; the tag’s signal usually falls within its range.

Tags consist of a microchip and an antenna, both encapsulated in polymer material. The microchip has encoded data, called *identification* (ID),
Related Content

A Methodology for the Design, Development and Validation of Adaptive and Context-Aware Mobile Services
www.igi-global.com/chapter/methodology-design-development-validation-adaptive/7121?camid=4v1a

An Evaluation of the RFID Security Benefits of the APF System: Hospital Patient Data Protection
www.igi-global.com/chapter/evaluation-rfid-security-benefits-apf/37856?camid=4v1a

Toward A Generic Infrastructure for Ubiquitous Computing
www.igi-global.com/article/toward-a-generic-infrastructure-for-ubiquitous-computing/93003?camid=4v1a

Leveraging Semantic Technologies towards Social Ambient Intelligence
www.igi-global.com/chapter/leveraging-semantic-technologies-towards-social/37873?camid=4v1a