INTRODUCTION

Though traditional DSS provide strong data management, modelling and visualisation capabilities for the decision maker, they do not explicitly support scenario management appropriately. Systems that purport to support scenario planning are complex and difficult to use and do not fully support all phases of scenario management. This research presents a life cycle approach for scenario management. The proposed process helps the decision maker with idea generation, scenario planning, development, organization, analysis, execution, and the use of scenarios for decision making. This research introduces scenario as a DSS component and develops a domain independent, component-based, modular framework that supports the proposed scenario management process.

BACKGROUND

Herman Kahn, a military strategist at Rand Corporation, first applied the term scenario to planning in the 1950s (Schoemaker, 1993). Scenario analysis was initially an extension of traditional planning for forecasting or predicting future events. Currently, scenarios are constructed for discovering possibilities, leading to a projection of the most likely alternative. Scenarios explore the joint impact of various uncertainties, which stand side by side as equals. Usually sensitivity analysis examines the effect of a change in one variable, keeping all other variables constant. Moving one variable at a time makes sense for small changes. However, if the change is much larger, other variables do not stay constant. Schoemaker (1995) argues that scenario, on the other hand, changes several variables at a time, without keeping others constant. Decision makers have been using the concepts of scenarios for a long time, but due to its complexity, its use...

SCENARIO MANAGEMENT AND SUPPORT

Issues, Controversies, Problems

The literature still lacks a suitable approach for planning, developing, analyzing, organizing and evaluating the scenario using model-driven decision support systems. Currently available scenario management processes are cumbersome and not properly supported by the available tools and technologies. Therefore, we introduce a life cycle approach based scenario management guideline. Generation of multiple scenarios and sensitivity analysis exacerbate the decision makers problem. The available scenario planning tools are not suitable for assessing the quality of the scenarios and do not support the evaluation of scenarios properly through comparison processes. We introduce an evaluation process for comparison of instances of homogeneous and heterogeneous scenarios that will enable the user to identify the most suitable and plausible scenario for the organization. Considering the significance of scenarios in the decision-making process, this research includes scenario as a decision-support component of the DSS and defines Scenario-driven DSS as an interactive computer-based system, which integrates diverse data, models and solvers to explore decision scenarios for supporting the decision makers in solving problems.

Traditional DSS have been for the most part data-driven, model-driven and/or knowledge-driven but have not given due importance to scenario planning and analysis. Some of the DSS have partial support for sensitivity analysis and goal-seek analysis but this does not fulfil the needs of the decision maker. In most cases, the available scenario analysis tools deal with a single scenario at a time and are not suitable for development of multiple scenarios simultaneously. A scenario impacts on related scenarios but currently available tools are not suitable for developing a scenario based on another scenario.

To address the problems and issues raised above we followed an iterative process of observation/evaluation, theory building, and systems development (Nunamaker, Chen and Purdin, 1991), wherein we proposed and implemented a flexible framework and architecture for a scenario driven decision support systems generator (SDSSG). It includes scenario as a DSS component, extends the model-driven DSS, and incorporates knowledge- and document-driven DSS (Power, 2001). A prototype was developed, tested and evaluated using the evaluation criteria for quality and appropriateness of scenarios (Schoemaker, 1995) and principles of DSSG frameworks and architectures (Collier, Carey, Sautter and Marjaniemi, 1999; Geoffrion, 1987; Ramirez, Ching, and Louis, 1990).

Solutions and Recommendations

Scenario Management: A Life Cycle Approach

The scenario can be different for different problems and domains but a single management approach should support the model-driven scenario analysis process. Therefore, this research introduces a scenario management process using life cycle approach that synthesizes and extends ideas from
Related Content

[www.igi-global.com/article/business-models-b2b/1834?camid=4v1a](www.igi-global.com/article/business-models-b2b/1834?camid=4v1a)

A Semantic Web Service Architecture for Learning Object Repositories
[www.igi-global.com/chapter/semantic-web-service-architecture-learning/4764?camid=4v1a](www.igi-global.com/chapter/semantic-web-service-architecture-learning/4764?camid=4v1a)

Business Associates in the National Health Information Network: Implications for Medical Information Privacy
[www.igi-global.com/article/business-associates-national-health-information/3924?camid=4v1a](www.igi-global.com/article/business-associates-national-health-information/3924?camid=4v1a)

On Personalizing Web Services Using Context
[www.igi-global.com/article/personalizing-web-services-using-context/1844?camid=4v1a](www.igi-global.com/article/personalizing-web-services-using-context/1844?camid=4v1a)