Data-Driven Decision Making for New Drugs: A Collaborative Learning Experience

George P. Sillup, Saint Joseph’s University, USA
Ronald K. Klimberg, Saint Joseph’s University, USA
David P. McSweeney, Healthcare Data Management, Inc., USA

ABSTRACT
Two courses, advanced decision-making and pharmaceutical marketing, were combined in a collaborative process to mimic how the pharmaceutical industry determines the potential of new drugs. Integrated student teams worked together to complete semester-long projects and taught each other their respective knowledge areas—marketing and statistics. Real-world data for medical and pharmacy claims payments were “cleaned” and mined by students to analyze usage and cost patterns for anti-hypertensive and anti-hypercholesterolemia drugs currently on the market. Analyses included merging the medical and pharmaceutical data records to derive individual electronic patient records, which were the basis of financial projections for the new drugs. Importantly, the single patient record is congruent with the needs of the stakeholders currently working to reform U.S. healthcare delivery.

Keywords: Academia, Business Intelligence Application, Innovative Teaching, Medical Records, Pharmaceuticals

INTRODUCTION
Academic enrollment during this recession is increasing but there are more unemployed college graduates seeking employment than high school dropouts (Grummon, 2009). Therefore, the time is right to augment the business student’s learning so they are equipped with appropriate skill sets to meet their employer’s needs, such as techniques for data analysis. This is particularly true for students pursuing employment within the pharmaceutical industry and/or those industries involved with the drug development process where development of new prescription medicines takes about 10 years to gain marketing approval in the United States (U.S.) and costs close to a billion dollars (Dimasi & Paquette, 2004).

Concurrently, America is making a genuine attempt at healthcare reform and, while there is disagreement in Congress about how to accomplish it, any sustainable reform will involve an integration of data from all the stakeholders in U.S. healthcare delivery (Connolly, 2009):

DOI: 10.4018/jbir.2010040105
• Patients, whose healthcare needs increase along with their increased life spans,
• Product manufacturers to include, pharmaceuticals, medical devices and diagnostics,
• Payers, private and government programs, e.g., Medicare,
• Providers to include hospitals and doctors, of which there is a considerable shortage to meet patients’ needs (Halsey, 2009),
• Policy Makers/Regulators, such as the Food & Drug Administration (FDA),

Within pharmaceutical companies making the appropriate decisions about the therapeutic viability of a potential new drug takes a team of professionals with different educational backgrounds to assess the safety and efficacy of a potential new drug. Based on these clinical studies, the team projects profitability based on clinical advantages, such as improved efficacy or reduced side effects, and how it compares to currently available therapeutic alternatives. The patterns of use and costs of medications are most accurately captured in the actual claims data used by healthcare payers to pay providers. But these data often contain inaccuracies that must be addressed before the can be analyzed.

Replicating this process as part of an undergraduate course is challenging but conceivable when students who possess complementary skill sets work together and real-world data are available (Berg, 2003). We created such a situation when we integrated a pharmaceutical marketing research course with an advanced decision-making course.

This paper will discuss the process we used to combine the learning efforts of both classes and to generate results into a format that has application for making informed decisions about the drug development process and implications for sustainable healthcare reform. The next section reviews the literature and positions our work to address research questions about integrating classes and the value of business intelligence. Following the literature review, we will describe our research methodology and review and discuss our findings. Finally, we will give our conclusions and present implications for future research.

LITERATURE REVIEW

Bringing innovative learning into the classroom has been a long-time goal of college educators, particularly for subjects that combine in-class learning with real-world problem solving (Katz, 1982). In a recent and comprehensive work by Simpson, Jackson and Aycock (2004), they harkened back to the messages of John Dewey about the many and varied roles of a teacher, such as navigator and wise physician, necessary to create a stimulating learning experience. This message was reinforced by the current dissatisfaction with business education from...
Related Content

Propose a Conceptual Model of Adaptive Competitive Intelligence (ACI)
International Journal of Business Intelligence Research (pp. 22-32).
www.igi-global.com/article/propose-a-conceptual-model-of-adaptive-competitive-intelligence-aci/104736?camid=4v1a

Expanding Business Intelligence Power with System Dynamics
Edilberto Casado (2004). *Business Intelligence in the Digital Economy: Opportunities, Limitations and Risks* (pp. 126-140).
www.igi-global.com/chapter/expanding-business-intelligence-power-system/6069?camid=4v1a

Fundamental Issues in Automated Market Making
www.igi-global.com/chapter/fundamental-issues-automated-market-making/6783?camid=4v1a
The Effect of Behavioral Factors on Stock Price Prediction using Generalized Regression and Backpropagation Neural Networks Models
Payam Hanafizadeh and Ahmad Hashemi (2014). *International Journal of Business Intelligence Research* (pp. 44-57).