Chapter XII

COGEVAL: Applying Cognitive Theories to Evaluate Conceptual Models

Stephen Rockwell, University of Tulsa, USA
Akhilesh Bajaj, University of Tulsa, USA

ABSTRACT

Conceptual models have been evaluated along the dimensions of modeling complexity (how easy is it to create schemas given requirements?) and readability (how easy is it to understand the requirements by reading the model schema?). In this work, we present COGEVAL, a propositional framework based on cognitive theories to evaluate conceptual models. We synthesize work from the cognitive literature to develop the framework and show how it can be used to explain earlier empirical results as well as existing theoretical frameworks. We illustrate how COGEVAL can be used as a theoretical basis to empirically test readability. Unlike much of the earlier empirical work on readability, our approach isolates the effect of a model-independent variable (degree of fragmentation) on readability. From a practical perspective, our findings will have implications for both creators of new models and practitioners who use currently available models to create schemas.

INTRODUCTION

Conceptual models[^1] are important in the area of information systems (IS) development. Essentially, a conceptual model is a method of documenting
elements of an underlying reality. Model schemas may be used as (a) a method of either informally or formally documenting end-user requirements, which are initially articulated in a natural language like English; and/or (b) a method of optimally designing the subsequent IS. A commonly used example of both (a) and (b) is the use of the Entity Relationship Model (ERM) (Chen, 1976) to capture end-user requirements for constructing a relational database application. Once the requirements are documented in an ERM schema, the ERM schema can then be mapped, using well-known rules, to a measurably good relational schema design. Over 100 conceptual models have been proposed for requirements modeling (Olle, 1986), with over 1,000 brand name methodologies utilizing these models (Jayaratna, 1994).

Several desirable attributes of modeling methods have been proposed in earlier work. These include: (a) the adequacy or completeness of the modeling method in being able to represent the underlying reality (Amberg, 1996; Bajaj & Ram, 1996; Brosey & Schneiderman, 1978; Kramer & Luqi, 1991; Mantha, 1987; Moynihan, 1996); (b) the readability of the modeling method’s schemas (Hardgrave & Dalal, 1995; Shoval & Frummerman, 1994); and (c) how easy it is to use the modeling method to represent requirements (Bock & Ryan, 1993; Kim & March, 1995; Kramer & Luqi, 1991; Shoval & Even-Chaime, 1987; Siau & Cao, 2001). Many earlier works consider both the effectiveness and the efficiency aspects of (a) and (b) (Bajaj, 2002; Wand & Weber, 2002). Modeling effectiveness is the degree to which modelers can correctly create the schema of a model for a given requirements case. Modeling efficiency is the amount of effort expended to create the schema. Similarly, readability effectiveness is the degree to which readers of schema can correctly recreate the underlying requirements. Readability efficiency is the amount of effort taken by readers of a model schema to re-create the requirements.

Past approaches used to evaluate these models can be broadly categorized into theoretical and empirical work. Theoretical approaches have utilized a priori frameworks to analyze models. Examples of these frameworks include: the Bunge-Wand-Weber framework (BWW) (Wand & Weber, 1995; Weber, 1997) that has as its basis an ontology previously proposed by Bunge. Models are evaluated based on the degree to which their constructs match the constructs in the Bunge ontology. A second example is a set of content specifications proposed in earlier work (Bajaj & Ram, 1996) that analyze models based on the degree to which the specification is fulfilled by the model. A third example of a priori frameworks is the use of quantitative metrics, such as the number of concepts (constructs) in a model, the degree of relationship between constructs, and so forth. (Bajaj, 2000; Castellini, 1998; Siau & Cao, 2001). These quantitative metrics can be used to compare models without the need for empirical work. While all of these approaches offer insights into different models; in general, they are all axiomatic, that is, they have not been empirically validated (Bajaj, 2002).
Related Content

Enhancing the Process of Knowledge Discovery in Geographic Databases Using Geo-Ontologies
[www.igi-global.com/chapter/enhancing-process-knowledge-discovery-geographic/8044?camid=4v1a](www.igi-global.com/chapter/enhancing-process-knowledge-discovery-geographic/8044?camid=4v1a)

The Expert's Opinion: A Personal Perspective on the Use of Computing Technology
[www.igi-global.com/article/expert-opinion-personal-perspective-use/51204?camid=4v1a](www.igi-global.com/article/expert-opinion-personal-perspective-use/51204?camid=4v1a)

Semi-Automatic Composition of Situational Methods
[www.igi-global.com/article/semi-automatic-composition-situational-methods/61339?camid=4v1a](www.igi-global.com/article/semi-automatic-composition-situational-methods/61339?camid=4v1a)

Providing Approximate Answers Using a Knowledge Abstraction Database
[www.igi-global.com/article/providing-approximate-answers-using-knowledge/3261?camid=4v1a](www.igi-global.com/article/providing-approximate-answers-using-knowledge/3261?camid=4v1a)