Chapter XI

A Framework for Cognitive Skill Acquisition and Spreadsheet Training in End-Users

S.E. Kruck
James Madison University, USA

John J. Maher
Virginia Tech University, USA

Reza Barkhi
Virginia Tech University, USA

ABSTRACT

It is well documented that electronic spreadsheet models utilized in many professions to enhance decision-making frequently contain errors that have negative effects on the ultimate quality of decisions. Limited research has been published that systematically identifies potential reasons for the causes of these errors, and what procedures can be taken to minimize or eliminate them. Our research provides initial evidence concerning this problem area by investigating how several important cognitive skills are affected by formalized spreadsheet training. Results indicate that one cognitive skill, logical reasoning, significantly increases after a six-week training period. Importantly, the greater the increase in logical reasoning skill, the more effectively the subject
INTRODUCTION

In a knowledge-based economy where end-user computing empowers the users to accomplish cognitively intensive tasks, cognitive skills play a critical role in how individuals perform their tasks. One of the first end-user computing tools to gain widespread popularity is the electronic spreadsheet. Effective electronic spreadsheet model development skills are considered vital for workers in a wide variety of occupations. Employers have identified competent spreadsheet skills as one of the most beneficial fundamental computer literacy skills a worker can possess following word processing skills (see Davis & Leitch, 1988; O’Leary, 1989; Coy & O’Grady, 1992; Heagy & Gallum, 1994; Davis, 1997; AAA, 2000). However, it has been well documented that spreadsheet models developed by end users contain surprisingly high error rates (e.g. Brown & Gould, 1987; Davis & Ikin, 1987; Cragg & King, 1993; Janvrin & Morrison, 1996; Panko & Havlerson 1996; Panko & Havlerson 1997; Panko & Sprague 1998). Spreadsheet errors can have a dramatic effect on the performance and decision process of end users. Given the widespread use of spreadsheet models, it is critical to understand how spreadsheet training interacts with cognitive skills.

In this paper, we propose a framework that suggests spreadsheet training will influence four cognitive skills: logical reasoning, spatial visualization ability, mnemonic skill, and sequencing ability; and that these cognitive skills will influence the errors in spreadsheet models. We empirically test the framework to identify specific cognitive skills that influence errors in spreadsheet models developed by end users. We use a block experiment (Cook & Campbell, 1979), where one group is the treatment group who will not receive spreadsheet training and another group will receive six weeks of spreadsheet training. We perform a pre-test and post-test analysis of the measures of the four components of cognitive skills in our framework (i.e., logical reasoning, spatial visualization, mnemonic skill, and sequencing). The results of the study lead us to modify the framework because only one of the cognitive skills, logical reasoning is found to possess the dominant effect while the
Related Content

Connection, Fragmentation, and Intentionality: Social Software and the Changing Nature of Expertise
www.igi-global.com/chapter/connection-fragmentation-intentionality/69753?camid=4v1a

Authoring of Adaptive Hypermedia Courseware Using AHyCO System
www.igi-global.com/chapter/authoring-adaptive-hypermedia-courseware-using/18216?camid=4v1a

The Role of Training in Preparing End Users to Learn Related Software
www.igi-global.com/article/role-training-preparing-end-users/3715?camid=4v1a
Architectural Models for Reliable Multi-User Interfaces