Page Number and Graph Treewidth

Li Xianglu, Zhongyuan University of Technology, China

ABSTRACT

Book-embedding of graph G involves embedding its vertices along the spine of the book and assigning its edges to pages of the book such that no two edges cross on the same page. The pagenumber of G is the minimum number of pages in a book-embedding of G. In this paper, the authors also examine the treewidth TW(G), which is the minimum k such that G is a subgraph of a k-tree. The authors then study the relationship between pagenumber and treewidth. Results show that PN(G) ≤ TW(G), which proves a conjecture of Ganley and Heath showing that some known upper bounds for the pagenumber can be improved.

Keywords: Book Embedding, Ganley and Heath, Graph Labeling, Pagenumber, Treewidth

INTRODUCTION

The book-embedding problem for graph G is to embed its vertices onto a line along the spine of the book and to draw the edges on pages of the book such that no two edges on the same page cross, and the number of used pages is minimized.

The book-embedding problem has been motivated by several areas of computer science such as VLSI theory, multilayer printed circuit boards (PCB), sorting with parallel stacks and Turning-machine and the design of fault-tolerant processor arrays, etc (e.g., Chung et al., 1987). The DIOGENES approach to fault-tolerant processor arrays, proposed by Rosenberg (1986), is the most famous one. In the DIOGENES approach, the processing elements are laid out in a logical line, and some number of bundles of wires run in parallel with the line. The faulty elements are bypassed, and the fault-free ones are interconnected through the bundles. Here, the bundles work as queues and/or stacks. If the bundles work as stacks, then the realization of an interconnection network needs a book-embedding of the interconnection network. In this case, the number of pages corresponds to the number of bundles of the DIOGENES stack layout. Therefore, book-embeddings with few pages realize more hardware-efficient DIOGENES stacks layouts.

The book-embedding problem can be stated as a graph-labeling problem as follows. We shall follow the graph-theoretic terminology and notation used by Bondy and Murty (1976) and Golumbic (1980).

Given a simple connected graph \(G = (V, E) \) with \(n \) vertices, a bijection \(f : V \rightarrow \{1, 2, \cdots, n\} \) is called a labeling of \(G \) by Chung(1988), where \(f(v) \in \{1, 2, \cdots, n\} \) represents the label.

DOI: 10.4018/jamc.2010070104
of vertex $v \in V$. Let $u_i = f^{-1}(i)$ be the vertex with label i. Then the labeling f can also be regarded as an ordering (u_1, u_2, \cdots, u_n) on a line. For a labeling f, two edges $uv, xy \in E$ are said to be crossing if $f(u) < f(x) < f(v) < f(y)$ or $f(x) < f(u) < f(y) < f(v)$.

With respect to a labeling f, a partition $C = (E_1, \cdots, E_p)$ of the edge set $E(G)$ is called a page partition if no two edges in any subset E_i are crossing. This page partition can be thought of as a coloring of $E(G)$ where the edges in E_i have color i and no two edges of the same color are crossing. Thus, a page partition C represents an assignment of edges of G to pages of the book. We call the minimum number of subsets in a page partition C the page number of G under labeling f, and denote it by $PN(G, f)$. The page number of G is then defined as:

$$PN(G) = \min_f PN(G, f)$$

where f is taken over all labelings of G.

Even for a given labeling f, determining the page number $PN(G, f)$ is known to be NP-complete (e.g., Chung et al., 1987). In other words, this is a hard problem in general. So, most researchers now are interested in the polynomially solvable special cases and lower or upper bounds of the page number (e.g., Chung et al., 1987; Ganley & Heath, 2001). Recently, Ganley and Heath (2001) proved that $PN(G) \leq k + 1$ if G is a k-tree. In the present paper we present a better result that $PN(G) \leq TW(G)$ for any graph G, where $TW(G)$ stands for the treewidth of G. This upper bound is sharp; and by means of it, we can improve the relations between pagenumber and other graph-theoretic parameters (such as pathwidth, bandwidth, cutwidth). In particular, the result on k-trees can be improved as $PN(G) \leq k$, and thus the conjecture of Ganley and Heath (2001) that every k-tree has a k-page embedding is proved to be true.

1. PRELIMINARIES

Let us recall some definitions and results on chordal graphs and k-trees.

A graph G is called a chordal graph if every cycle of length greater than three has a chord. Here, a chord means an edge joining two nonconsecutive vertices of the cycle. There have been many results on the characterization of chordal graphs in the literature (e.g., Blair & Peyton, 1993; Bodlaender, 1993; Golumbic, 1980; Kloks, 1994). The following is known as the clique-intersection property of chordal graphs, in which the tree T is called the clique-tree of G (e.g., Blair & Peyton, 1993; Golumbic, 1980).

Lemma 1. Let $\mathcal{X} = \{X_1, X_2, \cdots, X_m\}$ be the set of all maximal cliques of G. Then G is chordal if and only if there exists a tree T with vertex set \mathcal{X} such that for each vertex v of G, the subgraph of T induced by $\{X \in \mathcal{X} : v \in X\}$ is connected and thus is a subtree of T.

The above-mentioned condition can be equivalently stated as: if X_j is lying on the path connecting X_i and X_k in T, then $X_i \cap X_k \subseteq X_j$. This has been used to produce the notion of tree-decomposition by Bodlaender (1993), Kloks (1994) and Robertson and Seymour (1986).

The k-trees are special chordal graphs. They can be defined inductively as follows. A complete graph on $k + 1$ vertices is a k-tree. If G is a k-tree and v_1, v_2, \cdots, v_k are the vertices of a k-clique in G, then the graph obtained by adding a new vertex v to G together with edges from v to each of v_1, v_2, \cdots, v_k is also a k-tree.

In the clique-tree T of a k-tree G, every vertex (maximal clique) is a $k + 1$-clique and two adjacent cliques have exactly k vertices of G in common. For example, a 2-tree G and
Related Content

Early Warning from Car Warranty Data using a Fuzzy Logic Technique
Mark Last, Yael Mendelson, Sugato Chakrabarty and Karishma Batra (2010).
Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design (pp. 347-364).
www.igi-global.com/chapter/early-warning-car-warranty-data/38576?camid=4v1a

Models and Solutions for Truck and Trailer Routing Problems: An Overview
Isis Torres Pérez, José Luis Verdegay, Carlos Cruz Corona and Alejandro Rosete Suárez (2013). International Journal of Applied Metaheuristic Computing (pp. 31-43).
www.igi-global.com/article/models-solutions-truck-trailer-routing/77637?camid=4v1a

Optimization of Drilling Process via Weightless Swarm Algorithm
T. O. Ting (2015). Emerging Research on Swarm Intelligence and Algorithm Optimization (pp. 181-190).
www.igi-global.com/chapter/optimization-of-drilling-process-via-weightless-swarm-algorithm/115304?camid=4v1a
Exterior Path Relinking for Zero-One Optimization
www.igi-global.com/article/exterior-path-relinking-for-zero-one-optimization/117263?camid=4v1a