Chapter 9
Cognitive Robotics and Multiagency in a Fuzzy Modeling Framework

Goran Trajkovski
Algoco eLearning Consulting, USA

Georgi Stojanov
The American University in Paris, France

Samuel Collins
Towson University, USA

Vladimir Eidelman
Columbia University, USA

Chris Harman
Swarthmore College, USA

Giovanni Vincenti
Gruppo Vincenti, S.r.l., Italy

ABSTRACT

Fuzzy algebraic structures are a useful and flexible tool for modeling cognitive agents and their societies. In this article we propose a fuzzy algebraic framework where the valuating sets are other than the unit interval (lattices, partially ordered sets or relational structures). This provides for a flexible organization of the information gathered by the agent (via interactions with the environment and/or other agents) and enables its selected use when different drives are active. Agents (Petitagé, ANNA, POPSICLE and Izbushka), which are instantiations of our model, are also given in order to illustrate the use of this framework, as well as its possible extensions.

DOI: 10.4018/978-1-60960-171-3.ch009
INTRODUCTION

Powerful tools, capable of capturing relevant parts of the world, as well as flexible enough to enable customized views of behaviors, are necessary when observing and calibrating cognitive agents in single and multiagent environments. This need becomes even more apparent when observing the interaction between the agent and the environment, the agents themselves, and while studying the emergence of new phenomena in such setups. Due to the extension of ranks, fuzzy structures enable for a more flexible and anthropomorphic toolset for frameworks within which we study the agents, environment, interaction, and other related phenomena.

When fuzzifying crisp algebraic and relational structures, we usually change the rank of the characteristic function of either the carrier of the structure, or of the operations/relations of the systems (observed as sets themselves) from the two-element set \{0, 1\} to the unit interval \([0, 1]\). For our modeling purposes, we introduce further generalizations. The unit interval is a special case of a lattice, every lattice a partially ordered set (poset), and each poset a relational structure. For our cognitive model, we utilize algebraic structures valued by lattices (L-fuzzy structures), posets (P-fuzzy structures), and relational structures (R-fuzzy structures).

Within these efforts, in this article we observe fuzzy algebraic structures as a base for our interactivist model of agency. Based on their experiences from the stay in an initially unknown environment, our agents build associations of expectancies of the general form percept\(_1\)-action\(_0\)-percept\(_2\) (meaning that if it perceives percept\(_1\) and applies action\(_0\), it expects to see percept\(_2\)) and attribute to them drive-related emotional contexts. The exploration of the environment is governed by a Piagetian in-born scheme, a sequence of actions that an agent aims to execute in its search for a place where it can satisfy its active drive(s).

We will be presenting the below consideration using language as if applied to an autonomous mobile agent in a 2D environment, executing actions like forward, left, etc. This simplification does not hurt the exposition on the approach when applied to other types of environments (3D, cyberspace etc.), and actions (different from actual physical movements from one spot in the environment to another).

The article is organized as follows. Section 2 gives the cognitive agency and fuzzy algebraic preliminaries needed for the presentation of the cognitive agent in Section 3. Section 4 gives examples of cognitive agents within the fuzzy algebraic framework: Petitagé, our first complete cognitive agent, and its implementation in PYRO; ANNA, a cognitive agent with a neural network approach to learning; POPSICLE, as an environment for harvesting information from human subjects for the purpose of calibrating the simulation models; Izbushka, an agent-environment that couples with users, defining its goals via the interaction with the human partner. The last section overviews the article and gives directions for further research.

PRELIMINARIES

Below we present our view on agency and multiagency, as well as the fuzzy algebraic structure preliminaries necessary to introduce our new fuzzy algebraic definition of the cognitive agent.

Cognitive Agency

Crucial to the agent’s performance is the intrinsic representation of its environment that it builds when it interacts with the environment (or other agents). Due to perceptual resolution, problems such as perceptual and/or cognitive aliasing arise (Trajkovski 2007). For example, two locally distinct places of the environment might be perceived the same way by the agent. All that the agent can rely on at that point is the context of the place it is
Related Content

Valuation-Aware Traffic Control: The Notion and the Issues
[www.igi-global.com/chapter/valuation-aware-traffic-control/26940?camid=4v1a](www.igi-global.com/chapter/valuation-aware-traffic-control/26940?camid=4v1a)

Information Modeling and the Problem of Universals
[www.igi-global.com/chapter/information-modeling-problem-universals/8606?camid=4v1a](www.igi-global.com/chapter/information-modeling-problem-universals/8606?camid=4v1a)

Hierarchical Social Network Analysis Using a Multi-Agent System: A School System Case
[www.igi-global.com/article/hierarchical-social-network-analysis-using-a-multi-agent-system/97687?camid=4v1a](www.igi-global.com/article/hierarchical-social-network-analysis-using-a-multi-agent-system/97687?camid=4v1a)

Designing a Foundation for Mobile Agents in Peer-to-Peer Networks
[www.igi-global.com/chapter/designing-foundation-mobile-agents-peer/5175?camid=4v1a](www.igi-global.com/chapter/designing-foundation-mobile-agents-peer/5175?camid=4v1a)