Keywords: Engagement, Evaluations, Feedback, Quality, Response Rate

INTRODUCTION

Quality is without doubt a great concern for higher education institutions and government agencies. Over the last four decades a much debated and researched topic has been the role of student feedback in the improvement of learning and teaching quality. Research literature pertaining to student feedback is plentiful in other fields though it is somewhat limited in engineering education.

Harvey (2001) defines student feedback as “the expressed opinions of students about the service they received”. One way many universities have approached the process of allowing students to express their opinions is through student surveys or course evaluations.

Bennett and Nair (2010) list the major purposes of such feedback as:

(a) Diagnostic feedback that aids in the development and improvement of teaching and learning environments;
(b) Research data useful for guiding the redesign of units (subjects), courses, curriculum;
(c) Information on teaching effectiveness that may be used in administrative decision making; and,
(d) Measures useful for judging the quality of units and courses which may be tied to funding.

The first two purposes describe the generally recognised rationale for student surveys and course evaluations (Nair & Fisher, 2001). The last two purposes are somewhat new to
many universities, especially in Australia. Not only are there pedagogical and administrative advantages to the collection of student feedback, but there also are benefits for students themselves including:

(a) They are given an opportunity to provide confidential and anonymous feedback on matters relevant to them;
(b) They feel valued as their views are *listened to*;
(c) They are involved in the decision making process; and
(d) Their information becomes a resource for current and potential students in the selection of units and courses.

There is clear evidence that feedback from student evaluations can lead to improved teaching effectiveness (eg, Marsh, 1987, 2001; Marsh & Dunkin, 1997). The assertion that student evaluation is just a popularity contest has been shown not to be the case as has the assertion that to gain good evaluations, teachers should simply make the course easy (Centra, 2003; Dee, 2004; Feldman, 1997; Greenwald & Gillmore, 1997; Marsh, 1987). In fact, research demonstrates that teachers who assign more and difficult work tend to be rated as more effective teachers (Greenwald & Gillmore, 1997; Marsh, 1987). Other factors generally found to be unconnected to student ratings include class size, teacher characteristics (gender, age, teaching experience) and student characteristics (age, gender, personality) (Braskamp, 1994; Cashin, 1995; d’Apollonia & Abrami, 1997; Marsh & Roche, 1997, 2000; Marsh & Overall, 1980; Feldman, 1997). Further, Centra (2003) and Marsh (2001) found courses that were delivered at the “just right” level received the highest evaluations. Overall and Marsh (1979) showed that teachers who utilize teaching evaluations to improve their teaching ultimately have students who achieve higher test and assessment scores.

In short, the lessons learned from the meta-analyses of research undertaken over the last four decades provide strong evidence that student evaluations are a valid and reliable means of assessing teaching effectiveness and the quality of the educational environment in general which in turn is correlated with learning outcomes.

ENGINEERING EDUCATION AND STUDENT FEEDBACK

The integration of student feedback into higher education quality assurance processes is becoming more and more common. Student feedback can be used to enhance the quality of courses and their related classroom and laboratory practices and facilities. In addition, student feedback can enhance institutional prestige in the competitive global educational marketplace (Nair & Patil, 2008). Therefore, “it is essential to monitor and reflect upon the full spectrum of student feedback in order to devise and implement the best Quality Assurance mechanism in Engineering Education” (Nair & Patil, 2009, p. 250).

Where Does Evaluation Occur in the Quality Cycle?

The quality cycle consists of four elements; Plan, Act, Evaluate and Improve (Figure 1). A key element of any quality assurance process is the union of evaluation and improvement. It has been found that many organisations collect feedback (evaluate) but do not use the findings. Unfortunately, this conveys the message to students that their views were not valued.

As noted in a paper by the Graduate Careers Council of Australia (GCCA) (Graduate Careers Council of Australia, 1999, p. 20):

“*It is a myth that all you have to do is to send back the result of a survey to those concerned and action, improvement and innovation will automatically occur. Such an assumption ignores all the research on motivation and change management in universities.*”
6 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage:

www.igi-global.com/article/students-feedback-imperative-enhance-quality/49560?camid=4v1

This title is available in InfoSci-Journals, InfoSci-Journal Disciplines Engineering, Natural, and Physical Science. Recommend this product to your librarian:

www.igi-global.com/e-resources/library-recommendation/?id=2

Related Content

Peer Evaluation of Master Programs: Closing the Quality Circle of the CDIO Approach?
www.igi-global.com/article/peer-evaluation-master-programs/67133?camid=4v1a

Architecting the CDIO Educational Framework Pursuant to Constructive Alignment Principles
www.igi-global.com/article/architecting-cdio-educational-framework-pursuant/67134?camid=4v1a
New Tools in Hardware and Software Design Applied for Remote Photovoltaic Laboratory
www.igi-global.com/chapter/new-tools-hardware-software-design/61451?camid=4v1a

Articulating Design Education
www.igi-global.com/chapter/articulating-design-education/68729?camid=4v1a