INTRODUCTION

A corporate data warehouse is a repository that provides decision makers with a large amount of historical data concerning the overall enterprise strategy. A data-warehousing architecture defines a set of data repositories and their relationships to support the decision-making process in a given organization. Several architectural options (Cabibbo & Torlone, 2001; Jarke et al.,...
1999; Jukic, 2006; Samos et al., 1998; Watson et al., 2001) and methodologies (Bonifati et al., 2001; Giorgini et al., 2008; Luján-Mora & Trujillo, 2006a; Mazón et al., 2007a; Sen & Sinha, 2005) have been proposed to develop these repositories. Specifically, two foundational data-warehousing alternatives have been broadly discussed (Breslin, 2004): the \textit{top-down} approach originally stated by Inmon (2005) and the \textit{bottom-up} approach stated by Kimball and Ross (2002). The basis of these approaches consists of which data repositories should be developed first: a \textit{corporate data warehouse} in which an organization’s data are stored and integrated in a single repository (top-down) or \textit{departmental data marts} in which data are aggregated and customized for particular information needs (bottom-up). Although the former is considered to be the most elegant solution from a theoretical point of view, it is usually hard to implement since the project scope involves the whole organization (Watson et al., 2001), and the second approach is thus more suitable for agile developments despite the problems that arise during data-mart integration (Watson et al., 2001; Chaudhuri & Dayal, 1997). Both approaches fail when they attempt to derive the second data repositories (i.e., data marts or corporate data warehouse, respectively) due to the inherent high cost associated to the integration of huge amounts of data (top-down) and to the duplicated integration tasks done by data marts (bottom-up). In order to overcome these limitations, Kimball and Ross (2002) have also proposed a bus architecture articulated by \textit{conformed dimensions}. These dimensions account for 90 percent of the integration efforts made in order to tie data marts together (Kimball & Ross, 2002). They are obtained through the agreement of the entire organization, thus supporting truly cross-departmental decision-making processes. Despite all this, this solution is designed at the logical level (i.e., by using relational schemata), and does not therefore provide suitable mechanisms to drive complex developments such as methodologies (Bonifati et al., 2001; Giorgini et al., 2008; Luján-Mora & Trujillo, 2006; Mazón et al., 2006; Mazón & Trujillo, 2008) based on conceptual modeling (Abelló et al., 2006; Golfarelli et al., 1998; Hüsemann et al., 2000; Luján-Mora et al., 2006). Furthermore, existing matching methods do not cover the particular problems of integrating data warehouse and data mart schemas (Evermann, 2008).

However, we believe that the surrounding architectural debate (Breslin, 2004) has been overlooked by the current development approaches which are mainly based on conceptual modelling. These approaches have focused on capturing information requirements by means of \textit{multidimensional modelling} (Kimball & Ross, 2002; Chaudhuri & Dayal, 1997) which organizes data in terms of \textit{facts} and \textit{dimensions} of analysis, but does not specify how data repositories (i.e., corporate data warehouse and their dependent data marts) are built from them. For instance, departmental data marts may be built by different development teams in isolation. They therefore lack incorporated conformity issues to solve the integrated development of data marts and corporate data warehouses, in order to assure cross-departmental information needs such as those answered by \textit{drill-across} operations during “on-line analytical processing” (OLAP) (Chaudhuri & Dayal, 1997).

In this article, we present an approach based on \textit{goal-oriented requirement engineering} (Yu & Mylopoulos, 1994) and \textit{model-driven engineering} (Bézivin, 2006) technologies to solve the architectural debate (Breslin, 2004) by supporting Kimball's insights (Kimball & Ross, 2002) at the conceptual level. Goal elicitation was identified by Ang et al (1995) as the third most critical success factor in enterprise projects, being mandatory to begin any project with a conceptualisation of its goals and the ways to achieve them (Slevin & Pinto, 1987). This solution is based on our previous works (Luján-Mora et al., 2006; Luján-Mora & Trujillo, 2006b; Mazón et al., 2007a; Mazón & Trujillo, 2008; Pardillo et al., 2008) which propose: a modelling framework in terms of the goals that the data warehouse should achieve together with the information required to conform to analysis dimensions; and also, a transformation architecture based on the
A Hypertext Development Methodology
www.igi-global.com/article/hypertext-development-methodology/51118?camid=4v1a