Chapter 8.11
Application of Unified Modelling Language (UML) to the Modelling of Health Care Systems: An Introduction and Literature Survey

Christos Vasilakis
University College London, UK

Dorota Lenczarowicz
University of Westminster, UK

Chooi Lee
Kingston Hospital, UK

ABSTRACT

The unified modelling language (UML) comprises a set of tools for documenting the analysis of a system. Although UML is generally used to describe and evaluate the functioning of complex systems, the extent of its application to the health care domain is unknown. The purpose of this article is to survey the literature on the application of UML tools to the analysis and modelling of health care systems. We first introduce four of the most common UML diagrammatic tools, namely use case, activity, state, and class diagrams. We use a simplified surgical care service as an example to illustrate the concepts and notation of each diagrammatic tool. We then present the results of the literature survey on the application of UML tools in health care. The survey revealed that although UML tools have been employed in modelling different aspects of health care systems, there is little systematic evidence of the benefits.
INTRODUCTION

Health care systems are known to be complex and, as a result, difficult to analyse and re-engineer (Berwick, 2005). Health system engineers often rely on computer modelling and simulation to assist with the analysis of existing systems and the pretesting of suggested changes. To this extend, a variety of software engineering techniques and tools have been employed (Jun, 2007). Examples include data flow diagram (Pohjonen et al., 1994), state transition diagram (Mehta, Haluck, Frecker, & Snyder, 2002), entity relationship diagram (Kalli et al., 1992), integrated definition or IDEF (Hoffman, 1997), and more recently, Unified Modelling Language, commonly known as UML (Object Management Group, 2005).

UML provides a comprehensive set of tools that can be used for documenting the analysis of a system and for developing model requirements. UML diagrams are graphical depictions that demonstrate the flow of events within the system (Object Management Group, 2005). Depending on the perspective chosen for the study (e.g., actor oriented, activity oriented), different tools are available to the analyst. Due to its versatility and the ability to analyse systems from different perspectives, UML is said to be effective in describing and evaluating the functioning of complex systems such as health care (Kumarapeli, De Lusignan, Ellis, & Jones, 2007). However, there seems to be very little systematic evidence on its benefits.

The focus of the article is to review the literature on the application of UML tools to the analysis and modelling of health care systems. To this end, we first briefly introduce four of the most common UML diagrammatic tools, namely use case, activity, state, and class diagram. A full description of the concepts and syntax of UML diagrams is beyond the scope of this article. A plethora of user guides and technical notes are available on the subject, with the monograph by Ambler (2004) a particularly useful introduction.

We briefly introduce here the four UML diagrammatic tools that appear in the surveyed literature, namely, use cases and use case diagram, activity, state, and class diagram. A full description of the concepts and syntax of UML diagrams is beyond the scope of this article. A plethora of user guides and technical notes are available on the subject, with the monograph by Ambler (2004) a particularly useful introduction.

We illustrate the basic concepts and notation of each diagrammatic tool by presenting simple models of a simplified care process of surgical consultation with a patient in an outpatient clinic. In general, physicians refer patients for surgical consultation if they believe the underlying health problem is amenable to surgical intervention.
Related Content

Introducing the COrETeSt Feasibility Analysis in Medical Informatics: A Case Study of a Decision-Support Knowledge System in the Dutch Primary Care Sector

www.igi-global.com/chapter/introducing-coretest-feasibility-analysis-medical/78070?camid=4v1a

Challenges Associated with Physicians' Usage of Electronic Medical Records

www.igi-global.com/article/challenges-associated-physicians-usage-electronic/3978?camid=4v1a

Giving Up Smoking Using SMS Messages on your Mobile Phone

www.igi-global.com/chapter/giving-up-smoking-using-sms-messages-on-your-mobile-phone/138402?camid=4v1a

Low Power Listening in BAN: Experimental Characterisation

Stefan Mijovic, Andrea Stajkic, Riccardo Cavallari and Chiara Buratti (2014). *International Journal of E-Health and Medical Communications* (pp. 52-66).

www.igi-global.com/article/low-power-listening-in-ban/124287?camid=4v1a