Chapter 15

Towards Arithmetical Chips in Sub-Excitable Media: Cellular Automaton Models

Liang Zhang
University of the West of England, UK

Andrew Adamatzky
University of the West of England, UK

ABSTRACT

We discuss a theoretical design of an arithmetical chip built on an excitable medium substrate. The chip is simulated in a two-dimensional three-state cellular automaton with eight-cell neighborhoods. Every resting cell is excited if it has exactly two excited neighbors, the excited cells takes refractory state unconditionally. A transition from refractory back to resting state also happens irrelevantly to a state of the cell neighborhood. The design is based on principles of collision-based computing. Boolean logic values are encoded by traveling localizations, or particles. Logical gates are realized in collisions between the particles. Detailed blue prints of collision-based adders and multipliers presented in the article pave the way to future laboratory experimental prototypes of general-purpose chemical computers.

INTRODUCTION

Excitable chemical media are amongst most promising ‘wet’ computing devices capable for solving a wide ranging of tasks from optimization, computational geometry, image processing and robot control. The excitable media can also implement functionally complete sets of logical gates thus qualifying as (logically) universal computing systems. See theoretical background and details of laboratory implementations of reaction-diffusion computers in (Adamatzky, De Lacy Costello, Asai, 2005).

So far all experimental laboratory prototypes of reaction-diffusion chemical computers are in fact specialized, or task oriented purposed processors. They are capable for solution of only one problem or family of problems. When logical universality is concerned the experimental implementations do usually deal with one or two logical gates, just as a matter of demonstration (Adamatzky, 2004; De Lacy Costello and Adamatzky, 2005; Adamatzky and De Lacy Costello, 2007; Toth et al, 2008). To move from abstract computational
uni versatility to general-purpose machine we must
demonstrate how we can cascade simple logical
gates in more complicated circuits able to execute
sensible computational tasks. An implementation
of arithmetical chip in reaction-diffusion medium
would be enough to convince laymen that excit
able chemical computing devices are not just a
matter of curiosity but viable candidates for a role
of future non-silicon computers.

We envisage that novel arithmetic chip, to
be built in an excitable medium, will be based
on principles of collision-based computing. The
proposed chips will be based on logical schemes
of computation in Conway’s Game-of-Life (Ber
lekamp, Conway, Guy, 1982), Fredkin-Toffoli’s
conservative logic (Fredkin and Toffoli, 1982) and
Margolus’s physics of computation (Margolus,
1984). In collision-based computing (Adamatzky,
2003), quanta of information are represented by
compact patterns traveling in an ‘empty’ space and
performing computation by colliding with each
other. The absence or presence of traveling patterns
encodes values of Boolean logical variables. The
trajectories of patterns approaching a collision site
represent input variables, and the trajectories of
the patterns ejected from a collision, and traveling
away from the collision site, represent the results
of logical operations, output variables.

A sub-excitable Belousov-Zhabotinsky
medium (Sedina-Nadal et al, 2001) is an ideal
substrate to build collision-based arithmetical
chips in chemical systems. In a normal, excita
table, mode the Belousov-Zhabotinsky medium
responds to local perturbations by forming target
or spiral waves, which propagate in all possible
directions away from perturbation site. In a sub-excitable mode, we observe generation of
a localized excitations, or wave-fragments that
preserve their shape and travel like dissipative
solitons (Bode et al, 2002) in one pre-determined
direction for a substantial amount of time. We have
demonstrated (Adamatzky, 2004; De Lacy
Costello and Adamatzky, 2005; Adamatzky and
De Lacy Costello, 2007; Toth et al, 2008) that it
is possible to implement logical gates by collid
ing excitation wave-fragments. In present article
we use a cellular-automaton sub-excitable lattice
(Adamatzky, 1995; Adamatzky, 1998) to simulate
a sub-excitable chemical medium. We integrate
together our previous results (Zhang and Ad
amatzky, 2008; Zhang and Adamatzky, 2008) on
arithmetical operations in collision-based media.

**CELLULAR-AUTOMATON MODEL
OF SUB-EXCITABLE MEDIA**

We employ a two-dimensional three-state cellular
automaton model of an excitable medium — the
2+-medium, originally introduced in (Adamatzky,
1995; Adamatzky, 1998). The 2+-medium consists
of an orthogonal array of finite automata, where
every automaton, called a cell, takes three states:
resting, excited ‘+’ and refractory ‘-’ and updates
its state depending on the states of its eight neigh
bors. All cells update their states simultaneously
and in discrete time, using the same rule. A resting
cell becomes excited if it has exactly two excited
neighbors. The transitions from excited state to
refractory state, and from refractory state to rest
ning state are unconditional.

Most common, and also minimal in size, local
zations observed in 2+-medium, are particles
traveling along horizontal and vertical directions
of the cellular lattice (e.g. Figure 1a) and along
diagonals of the lattice (e.g. Figure 1b). A 2+-par
ticle consists of two excited cell-states and two
refractory cell-states (Figure 1a). The particle
can travel in four possible directions: East, West,
North and South, and the particle conserves its
configuration. A 3+-particle consists of three cells
in excited states and three cells in refractory states
(Figure 1b). The 3+-particle travels in the direc
tion of North-East, South-East, North-West and
South-West. Its topology changes in a cycle of
four configurations.

There is the only one stationary localization
in 2+-medium. The stationary oscillator (Figure