Chapter I

Agent-Oriented Methodologies: An Introduction

Paolo Giorgini
University of Trento, Italy

Brian Henderson-Sellers
University of Technology, Sydney, Australia

Abstract

As an introduction to agent-oriented (AO) methodologies, we first describe
the characteristics of both agents and multi-agent systems (MASs). This
leads to a discussion of what makes an AO methodology that can be used
to build an MAS. Finally, we briefly introduce the ten methodologies that
are described in the remaining chapters in this book.

Introduction

A methodology aims to prescribe all the elements necessary for the development
of a software system, especially in the context of commercial applications. Prior
to industry adoption, however, it is necessary for researchers to create that
methodology. This has led to academic and industry researchers creating a large
number of methodological approaches. A decade ago, there were estimated to
be over a thousand methodological approaches to software development (Jayaratna, 1994), although these can be grouped into a much smaller number (around five) of software development approaches (Iivari, Hirschheim, & Klein, 1999). To these can be added a sixth: agent-oriented (AO) methodologies; that is, methodological approaches suitable for the development of agent-oriented or agent-based software.¹

In parallel to the growth and availability of object-oriented (OO) systems development methodologies in the nineties, we are now seeing the burgeoning of a number of innovative AO methodologies, several of which form the core of this book. However, in contrast to OO methodologies, the field is not industry-driven—most AO methodologies are supported by small teams of academic researchers. Based on an observation that the coalescence of groups of OO methodologies in the late 1990s led to an increased take-up by industry of the object-oriented paradigm for system development and project management, this book aims to encourage first the coalescence and collaboration between research groups and then, hopefully, more rapid industry adoption of AO methodological approaches. In other words, most AO methodologies are (at the time of writing) in an early stage and still in the first context of mostly “academic” methodologies for agent-oriented systems development, albeit that many of these methodologies have been tested in small, industrial applications. One purpose of this book is to identify those predominant and tested AO methodologies, characterize them, analyse them, and seek some method of unification and consolidation with the hope that, in so doing, the community of scholars supporting AO methodologies will soon be able to transfer those innovative ideas into industry acceptance. This means mimicking the OO transition curve by seeking consolidation. One means of such consolidation is discussed in the last chapter of the book: the use of a method engineering framework (e.g., Martin & Odell, 1995) to create a repository of agent-oriented method fragments.

Agents and Multi-Agent Systems

Defining agents is not straightforward. There are many opinions, some of which you will see reflected in later chapters of this book (see also discussions in, for example, Luck, Ashri & D’Inverno, 2004). The key characteristics of agents are widely understood to be highly autonomous, proactive, situated, and directed software entities. Other characteristics such as mobility are optional and create a special subtype of agent; whereas some characteristics cannot be used as determining factors since they are really grey shades of a scale that encompasses both objects and agents.
Related Content

Quasi-PSO Algorithm for Modeling Foraging Dynamics in Social Mammals
www.igi-global.com/article/quasi-pso-algorithm-modeling-foraging/52092?camid=4v1a

A Multi-Agent Taxi Dispatching System
www.igi-global.com/article/multi-agent-taxi-dispatching-system/43865?camid=4v1a

Multiagent Learning on Traffic Lights Control: Effects of Using Shared Information
www.igi-global.com/chapter/multiagent-learning-traffic-lights-control/26945?camid=4v1a

Path Relinking Scheme for the Max-Cut Problem within Global Equilibrium Search
Volodymyr P. Shylko and Oleg V. Shylko (2013). *Recent Algorithms and Applications in Swarm Intelligence Research* (pp. 42-51).
www.igi-global.com/chapter/path-relinking-scheme-max-cut/70640?camid=4v1a