Existence of Positive Solutions of Nonlinear Second-Order M-Point Boundary Value Problem

F. H. Wong, National Taipei University of Education, Taiwan
C. J. Chyan, Tamkang University, Taiwan
S. W. Lin, Tamkang University, Taiwan

ABSTRACT

Under suitable conditions on \(f(t, u) \), the nonlinear second-order m-point boundary value problem

\[
\begin{align*}
 u''(t) + f(t, u(t)) &= 0, \quad 0 < t < 1 \\
 u(0) &= 0, \quad u(1) = \sum_{i=1}^{m-2} a_i u(\xi_i)
\end{align*}
\]

has at least one positive solution. In this paper, the authors examine the positive solutions of nonlinear second-order m-point boundary value problem.

Keywords: Fixed Point Theorem in Cone, Multi-Point, Nonlinear, Positive Solution, Second-Order

INTRODUCTION

The study of multi-point boundary value problems for linear second-order ordinary value problems was initiated by Llyin and Moisser (1987). Then Gupta studied three-point boundary value problems for nonlinear ordinary differential equations. We refer the reader to the reference (Gupta et al., 1994; Feng et al., 1997; Ma, 2001; Sun, 2005) for some recent results of nonlinear multi-point boundary value problems.

In this paper, we investigate the existence of positive solutions to nonlinear second-order multi-point boundary value problems:

\[
\begin{align*}
 u''(t) + f(t, u(t)) &= 0, \quad 0 < t < 1 \\
 u(0) &= 0, \quad u(1) = \sum_{i=1}^{m-2} a_i u(\xi_i)
\end{align*}
\]

DOI: 10.4018/jalr.2011010103
where $a_i \geq 0$ for $i = 1, 2, \ldots, m - 3$

and $a_{m-2} > 0$, ξ_i satisfy $0 < \xi_1 < \xi_2 < \ldots < \xi_{m-2} < 1$ and

$$\sum_{i=1}^{m-2} a_i u(\xi_i) < 1.$$

We also make the following assumptions.

$$\text{(A}_k\text{)} f \in C\left([0,1] \times [0,\infty);[0,\infty]\right)$$

$$(A_{k'})$$ There are real numbers H_1, H_2 satisfying $f(s,u) \leq M_1 H_1$ on $[0,1] \times [0, H_1]$ and $f(s,u) \geq M_2 H_2$ on $[\xi_{m-2}, 1] \times [\Gamma H_2, \infty)$, where $M_1 = 2 \left(1 - \sum_{i=1}^{m-2} a_i \xi_i \right)$ and $M_2 = 2 \left(1 - \sum_{i=1}^{m-2} a_i \xi_i \right)$ or $\frac{1}{(1 - \xi_{m-2})^2 \sum_{i=1}^{m-2} a_i \xi_i}$.

$$(A_{k''})$$ There are real numbers H_3, H_4 satisfying $f(s,u) \geq M_2 H_3$ on $[\xi_{m-2}, 1] \times [0, \Gamma H_3]$ and $f(s,u) \leq M_1 H_4$ on $[0,1] \times [H_4, \infty)$.

The proof of the main result in the article is based on an application of the following well-known Guo-Krasnoselskii fixed-point theorem (Krasnoselkii, 1964; Guo & Lakshmikantham, 1998).

The Preliminary Lemmas

Lemma 2.1 (Gupta et al., 1994). Let $a_i \geq 0$ for $i = 1, 2, \ldots, m - 2$ and $\sum_{i=1}^{m-2} a_i \xi_i \neq 1$; then for $y \in C[0,1]$, the boundary value problem:

$$u''(t) + g(t) = 0, \quad 0 < t < 1, \quad (2.1)$$

$$u(0) = 0, \quad u(1) = \sum_{i=1}^{m-2} a_i u(\xi_i) \quad (2.2)$$

has a unique solution

$$u(t) = \frac{t}{1 - \sum_{i=1}^{m-2} a_i \xi_i} \int_0^t (1 - s)g(s)ds - \int_0^t g(s)ds - \frac{t}{1 - \sum_{i=1}^{m-2} a_i \xi_i} \sum_{i=1}^{m-2} a_i \int_0^\xi (\xi_i - s)g(s)ds$$

Let $C^+[0,1]$ be the set of nonnegative function in $C[0,1]$.

Lemma 2.2 (R. Ma, 2001). Let $a_i \geq 0$ for $i = 1, 2, \ldots, m - 2$ and $\sum_{i=1}^{m-2} a_i \xi_i < 1$, then for $y \in C^+[0,1]$, the unique solution $u(t)$ of (2.1), (2.2) is nonnegative and satisfies

$$\min_{t\in[t_0,1]} u(t) \geq \Gamma \|u\|$$

where

$$\Gamma = \min \left\{ \frac{a_{m-2}(1 - \xi_{m-2})}{1 - a_{m-2}^2 \xi_{m-2}}, a_{m-2} \xi_{m-2}, \xi_1 \right\}.$$

Main Results

In this section we show the existence of positive solution for the boundary value problem (1.1), (1.2).

Theorem 3.1. Suppose $(A_1),(A_2)$ hold, then (1.1), (1.2) has at least one positive solution.
Applying the Immunological Network Concept to Clustering Document Collections
www.igi-global.com/chapter/applying-immunological-network-concept-clustering/19644?camid=4v1a