Chapter 4

A Highly Scalable, Modular Architecture for Computer Aided Assessment E-Learning Systems

Krzysztof Gierlowski
Gdansk University of Technology, Poland

Krzysztof Nowicki
Gdansk University of Technology, Poland

ABSTRACT

In this chapter, the authors propose a novel e-learning system, dedicated strictly to knowledge assessment tasks. In its functioning it utilizes web-based technologies, but its design differs radically from currently popular e-learning solutions which rely mostly on thin-client architecture. The authors’ research proved that such architecture, while well suited for didactic content distribution systems is ill-suited for knowledge assessment products. In their design, they employed loosely-tied distributed system architecture, strict modularity, test and simulation-based knowledge and skill assessment and an our original communications package called Communication Abstraction Layer (ComAL), specifically designed to support communication functions of e-learning systems in diverse network conditions (including offline environment and content aware networks). The system was tested in production environment on Faculty of Electronics, Telecommunications and Informatics, Technical University of Gdansk with great success, reducing staff workload and increasing efficiency of didactic process. The tests also showed system’s versatility in classroom, remote and blended learning environments.

INTRODUCTION

The task of knowledge assessment is one of the fundamental elements of didactic process. It was also one of the first didactic tasks to be conducted by various electronic learning devices employed to support didactic process.

Currently there are many e-learning solutions supporting knowledge assessment both as their
main functionality and as an additional module (Sakai, 2010; Moodle, 2010).

Almost any advanced e-learning tool offers this functionality. In light of those facts we could conclude that this area of e-learning is a well explored one and suitably supported in practical e-learning products.

Our experience with e-learning systems both as their users and designers, leads us to conclusion that the above statement is far from correct. Vast majority of currently available electronic knowledge assessment tools are extremely similar and offer strictly limited functionality. Such products offer almost exclusively knowledge assessment based on various choice tests and their automatic grading mechanisms most often are not very comprehensive and fit to support different grading scenarios.

In complex e-learning systems knowledge assessment functionality is treated as mandatory element, but also receives no special consideration, which often results in a simple implementation of choice test. Specialized knowledge testing solutions (employed for example by Microsoft during their computer proficiency exams) include more advanced mechanisms, like adaptive question selection, but they are few and still do not go beyond the basic scenario of choice test (Bersin & Associates, 2004; Jesukiewicz, P. et al., 2006).

Apart from these weaknesses, one of the most serious problems with currently available products and especially the most popular ones based on web-based thin-client architecture is their strict dependence on network connectivity. Majority of such products require constantly active network connection during e-learning session and few are fit to function under other circumstances, such as periodic or no network connectivity, and still remain a part of managed e-learning system. The quality of network service is also a factor in case of many of such products (Gierłowski K. & Gierszewski T., 2004).

Having analyzed above limitations of currently available knowledge assessment products, we designed and created our own dedicated knowledge assessment system. It was designed to provide highly modifiable platform for various knowledge testing tools, able to provide its functions in any network connectivity conditions (including no connectivity scenario). The system can scale from very simple setup (adequate for servicing a single exercise) to a large, distributed solution fit to support an enterprise. Strictly modular architecture allows users to employ only a selected set of its mechanisms and extremely easily integrate it with third-party solutions. The selection of employed modules depends completely on user needs – there is no mandatory control module or management platform which must be present.

We created a number of client modules with full support for low/no-connectivity scenarios, for example:

1. the classic, but highly configurable and versatile, multiple choice knowledge testing solution,
2. an unique simulation-based knowledge and skill assessment module, dedicated to exercises concerning Asynchronous Transfer Mode (ATM) and Frame Relay networks,
3. a module allowing a real-time grading of students performance during exercises.

Our system also addresses security aspects of remote, computer based knowledge testing, in both test distribution and results gathering preserving user anonymity to unauthorized parties.

As an key element of the system, we have created an innovative Communication Abstraction Layer (ComAL) - a set of mechanisms designed to provide e-learning system designers with API containing a comprehensive set of communication functions which can make an e-learning system independent of underlying network connectivity conditions. ComAL completely isolates e-learning solution programmer from the details of network communication and can be employed to easily create networked e-learning solutions, allowing...
Related Content

Online Teaching and Learning: Essential Conditions for Success
Lynne Schrum (2000). *Distance Learning Technologies: Issues, Trends and Opportunities* (pp. 91-106). www.igi-global.com/chapter/online-teaching-learning/8583?camid=4v1a

Stanford CyberLab: Internet Assisted Laboratories
Lambertus Hesselink, Dharmarus Rizal, Eric Bjornson, Sandy Paik, Raj Batra, Peter Catrysse, Dan Savage and Anthony Wong (2003). *International Journal of Distance Education Technologies* (pp. 21-39). www.igi-global.com/article/stanford-cyberlab-internet-assisted-laboratories/1602?camid=4v1a

A Successful Failure to Collaborate on Storage Technology Education

The Effect of Cultural Differences and Educational Technology on Distance Education in the South Pacific
Jonathan Frank and Janet Toland (2009). *Encyclopedia of Distance Learning, Second Edition* (pp. 779-786). www.igi-global.com/chapter/effect-cultural-differences-educational-technology/11838?camid=4v1a