Line Drawings that Appear Unsharp

Hans Dehlinger, University of Kassel, Germany

ABSTRACT

A straight line, pen-drawn and executed on a pen-plotter, is by default sharp and crisp. This is the nature of a straight line between two points. Likewise, drawings generated from such lines are by definition sharp. This paper considers generative line drawings, executed on a pen-plotter which appears to be wholly or in part unsharp when viewed. Described here are some strategies based on systematic experiments with geometric transformations to produce such drawings. The topic is approached from an artist’s point of view with a focus on the generative and algorithmic issues involved, and the results are demonstrated by examples.

Keywords: Blurred Image, Generative Art, Line Drawing, Pen-Plotter-Drawing, Unsharp Image

INTRODUCTION

Walking on a windy evening in winter at twilight, all trees without leaves, the landscape almost entirely gray, and the scene dominated by lines. Lines are everywhere. But the images are soft, often with unsharp contours. Although in reality, all these images are crisp and sharp, we see them blurred and soft, their shadows even more so. Viewing such scenes creates a specific mood in the viewer and therefore it is not surprising that artists have recognized the particular and interesting characteristics of such situations, and have tried to devise techniques to generate those effects.

Although a line is by definition sharp, and it seems to be illogical to imagine it otherwise, we attempt the generation of line-oriented images that appear unsharp to the viewer. This is an artistic challenge, and we will approach it experimentally. Being interested in computer generated algorithmic work, we restrict our experiments to pen-drawn, line-oriented drawings, coded as vectors and executed on pen-plotters. Such an unsharp line-drawing seems to be a contradiction in itself because it is composed of lines, which are always drawn as sharp and precise entities. In the light of such logic it is a particular challenge we try to achieve, and we follow this line of investigation out of artistic interest. In nature, due to conditions, unsharp images may be experienced in abundance. The two images in Figure 1, part of a tree photographed in insufficient light on a windy winter evening, and a willow tree, photographed under similar conditions may serve as examples. There is motion blur, transparency and gray-scaling, all contributing to the unsharp expression of the images. Unsharp images and images out of focus are known in contexts such as digital
imagery, photography, painting, advertising, and science for example. When we talk about “unsharp vector-line-images”, we always talk about images that appear unsharp. On close inspection their constituting entities, the lines are definitely sharp, as long as we view them under normal circumstances. The effect of “unsharpeness” is caused by insufficiencies of our perceptual systems to separate them properly, because of distance, interlacing, interferences and other factors. For the main topic of interest here – unsharp, line-oriented pen-drawn vector images, executed on pen-plotters – no algorithms formulated by computational experts are available, to the best of our knowledge. This is one of the reasons to choose an experimental approach, which seems justified as a beginning.

REMARKS ON THE PROBLEM

The systematic investigation of the problem in form of a sequence of experiments, carried out in 2009, can be seen as a follow-up on a few earlier attempts by the author: One of them exhibited at “intersections”, the SIGGRAPH 2006 Art Show in Boston (http://www.siggraph.org/artdesign/gallery/S06/index.html), and others reported in Lieser (2009). The experiments were set up to systematically explore unsharp line drawings restricted to the rather narrow species of line-oriented, generative, pen-drawn, pen-plotter drawings. It is important to explicitly point to this restriction. Vector oriented data formats were widely in use in the first-generation of drawing-output-devices for which we have to count the pen-plotters we use to carry out the drawings. To generate drawings in vector-formats, instruction-commands are used to drive and control the movements of the pen on the plotter. Typically, to draw a line on such a plotter, instructions like pen-up, pen-down, and move between x,y coordinate pairs are executed. This generating code is strictly vector oriented and it is distinctly different from the pixel-oriented codes almost exclusively in use for image manipulation today. From an artist’s point of view, the properties of a pen drawn line may just be what are wanted. And the resulting drawing may indeed be dramatically different from a pixel-based line-drawing. It may be of high aesthetic interest to be able to resort to a pen drawn vector line. Some artists from the Algorists Group (Beyls, 1988) actually insist to have it this way. The question posed here is: Can we generate drawings which appear to be unsharp or blurred, despite the sharp and crisp lines they are necessarily composed of? The question is justified, because blurred images are a particularly interesting class of images, and to generate or remove blur is a well researched.

Figure 1. Two unsharp photographic images of part of a tree in winter, photographed under insufficient light and strong wind
Related Content

Camera Calibration for 3D Reconstruction and View Transformation
www.igi-global.com/chapter/camera-calibration-reconstruction-view-transformation/4167?camid=4v1a

Data-Objects: Sharing the Attributes and Properties of Digital and Material Culture to Creatively Interpret Complex Information
Ian Gwilt (2013). Digital Media and Technologies for Virtual Artistic Spaces (pp. 14-26).
www.igi-global.com/chapter/data-objects-sharing-attributes-properties/73629?camid=4v1a

How to Use Photoshop to Improve the Gestalt of an Image
www.igi-global.com/chapter/use-photoshop-improve-gestalt-image/6849?camid=4v1a
Cortical 3D Face and Object Recognition Using 2D Projections

[www.igi-global.com/article/cortical-face-object-recognition-using/65081?camid=4v1a](www.igi-global.com/article/cortical-face-object-recognition-using/65081?camid=4v1a)