Location Management in PCS Networks Using Base Areas (BAs) and 2 Level Paging (2LP) Schemes

Hesham A. Ali, Mansoura University, Egypt
Ahmed I. Saleh, Mansoura University, Egypt
Mohammed H. Ali, Mansoura University, Egypt

ABSTRACT

The main objective of PCS networks is to provide “anytime-anywhere” cellular services. Accordingly, lost calls as well as the network slow response have become the major problems that hardly degrade the network reliability. Those problems can be overcome by perfectly managing the Mobile Terminals (MTs) locations. In the existing location management (LM) scheme, Location Area (LA) is the smallest unit for registration. A MT must register itself when passing through its LA boundary to a neighboring one. Moreover, such registration takes place at the MTs’ master HLR (even though currently managed by another HLR), which increases communication costs. As a result, existing LM scheme suffers from; (1) excessive location registrations by MTs located around LA boundaries (ping-pong effect) and (2) requiring the network to poll all LA cells to locate the callee MT. In this paper, a novel LM strategy is introduced by restructuring LAs into smaller areas called Base Areas (BAs), which impacts the paging cost. The proposed LM strategy uses caching to reduce unwanted updates and 2LP to reduce paging cost. Experimental results show that the proposed scheme introduces a distinct improvement in network response and tracing process.

Keywords: 2-level Paging (2LP), Base Areas (BAs), DB Cache, Home Location Register (HLR), Location Area (LA), Mobile Terminals (MTs), PCS Networks, Service Area (SA), Visitor Location Register (VLR)

INTRODUCTION

Providing a transparent cellular communication services all over the world is the most human aim over the past few years. Such services are the ones that guarantee a reliable exchange of information in any form (voice, data, video, image, etc.) with no worry about the real-time distribution of MTs. Hence, they should be independent of service time, user’s location and the underlying network access arrangement. This aim is continuously promoted by the tremendous

DOI: 10.4018/jitn.2011040101
growth in wireless communications (Brown & Mohan, 1997; Fang, Chlamtac, & Lin, 2000; Fang, Chlamtac, & Fei, 2000).

APCS network is the integration of cellular (Wireless) and conventional (wired) networks. It provides wireless communication services that enable Mobile Terminals (MTs) to communicate and exchange any form of information on the move “anytime-anywhere services”. One of the key issues in the design of PCS networks is the efficient management of real-time locations for MTs. To efficiently establish any service in the PCS network, the location of the MT should be clearly identified. Consequently, when an MT moves, it should inform the system with its new location (Gibson, 1996; Wong & Leung, 2000, Zhang, 2002). There are two basic operations in location management (LM); Location Registration (Location Update) (LR) and Call Delivery (CD). Location registration is the process through which the cellular system tracks the continuously changed locations of its MTs. On the other hand, when an incoming call arrives, the system has to search for the callee MT. This process is defined as call delivery or paging (Li, Kameda, & Li, 2000; Lo, Wolff, & Bernhardt, 1992; Meier-Hellstern & Alonso, 1992). To the best of our knowledge, there are two standard schemes for PCS location management, which are; Interim Standard 41 (IS-41) for North America Digital Cellular system and Global System for Mobile (GSM) for Pan-European Digital Cellular. Both schemes use a two-tier infrastructure of Home Location Register (HLR) and Visitor Location Register (VLR) databases. Moreover, in the existing LM schemes, only the master HLR for an MT is used for storing and updating any MT’s data even though that MT moves to another Service Area (SA) served by another HLR. This increases the communication costs for accessing the master HLR for both LR and CD dramatically. Also, Location Area (LA) is considered as the smallest unit to make LR.

In this paper, we have introduced a novel strategy for LM in PCS networks by restructuring the LAs of PCS networks into smaller areas called Base Areas (BAs), which in turn minimizes the paging cost. Moreover, registration is done through the current HLR instead of the master HLR, which improves not only the network response but also the network quality of service (QoS). Also, the proposed scheme uses caching to reduce unwanted LRs (Location Updates), read/write from/to databases (accessing database), and signaling costs. While existing LM scheme locates any MT by polling all LA cells, the proposed scheme uses 2LP (2-level paging) scheme to reduce the paging cost. An analytical model is developed to study the performance of the proposed frameworks. Experimental results have shown that the proposed scheme introduces a distinct improvement in network response and tracing process as well as reducing LM costs.

The rest of this paper is organized as follows: Background and Basic Concepts and Related Works are presented first. Next we describe the existing Location Management scheme. We present the proposed framework and an analytical model is presented. The performance comparisons between the proposed location management scheme and the existing one are discussed and we conclude the paper.

Background and Basic Concepts

Figure 1 describes the PCS networks structure. As depicted in such figure, PCS network is divided into service areas (SAs), which in turn are sub-divided into cells. A cell is the communication area serviced by one Base Station (BS). Hence, the location of any MT is thus the address of the cell in which it is currently located. In each cell, there is a Base Transceiver Station (BTS) that used to communicate with MTs over pre-assigned radio frequencies.

Each group of cells is connected to a Base Station Controller (BSC). Each group of BSCs is connected to a Mobile Switching Center (MSC). MSC is a telephone exchange specially assembled for mobile applications that is responsible for setting up, routing, and supervising calls to/from MTs. The area serviced by an MSC is called a LA, which is managed by one VLR. On the other hand, each group of LAs composes a SA, which is serviced by one...
Related Content

NetApp: Autonomic Network-Based Application Architecture for Creating New Value-Added Services
www.igi-global.com/article/netapp-autonomic-network-based-application/1415?camid=4v1a

Towards Smarter Cities and Roads: A Survey of Clustering Algorithms in VANETs
www.igi-global.com/chapter/towards-smarter-cities-and-roads/108087?camid=4v1a

Design of a Temperature-Constrained Governor to Save Energy in an Open Multi-Frequency Green Router
www.igi-global.com/article/design-of-a-temperature-constrained-governor-to-save-energy-in-an-open-multi-frequency-green-router/95721?camid=4v1a
Regulation and the Deployment of Broadband
www.igi-global.com/chapter/regulation-deployment-broadband/20445?camid=4v1a