Chapter 5

Efficient Techniques for Graph Searching and Biological Network Mining

Alfredo Ferro
Università di Catania, Italy

Rosalba Giugno
Università di Catania, Italy

Alfredo Pulvirenti
Università di Catania, Italy

Dennis Shasha
Courant Institute of Mathematical Sciences, USA

ABSTRACT

From biochemical applications to social networks, graphs represent data. Comparing graphs or searching for motifs on such data often reveals interesting and useful patterns. Most of the problems on graphs are known to be NP-complete. Because of the computational complexity of subgraph matching, reducing the candidate graphs or restricting the space in which to search for motifs is critical to achieving efficiency. Therefore, to optimize and engineer isomorphism algorithms, design indexing and suitable search methods for large graphs are the main directions investigated in the graph searching area. This chapter focuses on the key concepts underlying the existing algorithms. First it reviews the most known used algorithms to compare two algorithms and then it describes the algorithms to search on large graphs making emphasis on their application on biological area.
INTRODUCTION

Since the 1970s, many efforts have been spent to solve the subgraph isomorphism problem (Garey & Johnson, 1979). In contrast to other research areas, only a few algorithms have been widely used in applications (Cordella et al., 2004; Ullmann, 1976). They employ backtracking in the search tree (see Figure 1). The search space is reduced by pruning paths in the tree failing the match. Alternative approaches have been designed for special kind of graphs or to match particular typologies of queries (Dessmark et al., 2000; Eppstein, 1999; Matula, 1978; Alon et al, 1995). Another research direction has been focused on the approximate matching problem in which a measure of similarity has to be defined (Nilsson, 1980). Algorithms for subgraph isomorphism are heavily used to discovery frequent patterns which are indexed featured in graphs database (graph database search or graph mining) and/or to search in a selected area of the large graph (Cheng et al., 2007; Giugno et al., 2002; He et al., 2006; Di Natale et al., 2010; Williams et al., 2007; Yan et al., 2005; Zhang et al., 2007). The performance of such techniques strongly depend on the efficiency of the used subgraph isomorphism algorithm.

Because a large number of the real world structures are modeled by large graphs such as web, social and biological networks (Albert et al.,

Figure 1. Exact and Inexact Match. Tree all Possible Mappings represents all the maps between nodes of G_a and G_b. On the right we show a tree search-space to reach the first isomorphism. More precisely, the tree-search space pruned by an exact matching algorithm such as Ullmann’s algorithm, and the tree-search space pruned by an inexact matching algorithm such as the Nilsson’s algorithm. The leaves in the rectangular frames correspond to subisomorphisms. The writing Delete in the inexact match represents a tree-search node deletion (of course, if the first isomorphism was not reached, such a branch could be investigated). Here we assume that an underlying evaluation function is used to guide the state expansions. Different evaluation functions prune the tree-search differently.