Chapter 4

NASA Talk as a Discovery Learning Space: Self-Discovery Learning Opportunities

Debra C. Burkey Piecka
Wheeling Jesuit University, USA

Laurie Ruberg
Wheeling Jesuit University, USA

Christopher Ruckman
Wheeling Jesuit University, USA

Dynae Fullwood
NASA Johnson Space Center, USA

ABSTRACT

The NASA Talk online collaborative (www.nasatalk.com) gives educators a virtual place to talk about the many opportunities available from the National Aeronautics and Space Administration (NASA). NASA Talk participants include K-16 educators, NASA-affiliated educators’ support staff, and others interested in advancing STEM (science, technology, engineering and math) education. This chapter examines the self-discovery learning opportunities afforded by NASA Talk for a three-day professional development workshop from the perspectives of the NASA Talk team members, two NASA Aerospace Education Services Project specialists, and the workshop participants. For the conference, NASA Talk hosted a public collaborative named the NASA STEM Educators Workshop as well as several blogs. The analysis discusses how various needs are met for orientation and entry, learner decision making, individuated learning, intercommunications and collaboration, and original discovery in the NASA Talk content collaborative. A professional virtual community emerges where educators gathered onsite to receive instruction, but they turned to NASA Talk to share their ideas and experiences by posting articles, blogs, comments, multimedia, links, and other educational resources.

DOI: 10.4018/978-1-61350-320-1.ch004
INTRODUCTION

This chapter describes a model of the NASA Talk online content collaborative. NASA Talk is a Web 2.0 site where educators can come to share ideas, suggestions, success stories, and even frustrations about using National Aeronautics and Space Administration (NASA) resources to enhance science, technology, engineering, and mathematics (STEM) teaching and learning. While NASA provides hundreds of educational outreach resources related to aeronautics and flight, ecosystems, forces and motion, life sciences, engineering design, the solar system, the Moon, and weather and climate, these resources can be difficult to locate and often need some adaptation to fit the needs of the educator.

NASATalk Background and Milestones

The NASA Talk online collaborative (www.nasa-talk.com) gives educators a virtual place to talk about the many opportunities available from the space agency. As a collaborative, the site invites teachers, parents, or informal educators such as Scout or 4-H leaders, and NASA-affiliated educators to participate, whether communicating with other educators, reading blogs from fellow teachers and educational researchers, or even creating their own blog. The vibrant site thrives through the contributions of its participants.

As a content collaborative, NASA Talk serves as a forum for discussions about educator experiences using NASA educational resources. The open source Joomla-based website provides a professional virtual community of practice for educators using and/or inquiring about NASA educational resources for their K-16 STEM educational settings. NASA Talk participants include K-16 educators, NASA-affiliated educators’ support staff, STEM content experts, and others interested in advancing STEM education.

NASA Talk is designed and managed by the NASA-sponsored Classroom of the Future at the Center for Educational Technologies (CET) at Wheeling Jesuit University in Wheeling, WV. The idea for NASA Talk grew out of a 2006 Classroom of the Future™ educational technologies study that profiled effective use of new tools to support STEM learning, with primary focus on NASA science and technology innovators (Ruberg, Calinger, & Howard, 2009). As a result of the guidelines for best practice that resulted from the study, NASA wanted to test a web-based collaborative where educators could discuss how they use NASA resources in their classroom along with what works and what doesn’t. Development for the virtual community, originally called the EdTech Collaborative, began in 2007. The EdTech Collaborative site debuted in 2008.

In October 2009 the Classroom of the Future changed the EdTech Collaborative site name and Joomla-based presentation to NASA Talk to make its focus clearer to the target audience. The NASA Talk name more clearly implies the intent of the virtual community—a place to discuss educational resources related to NASA STEM materials. NASA Talk goals align with its Classroom of the Future project proposal.

NASATalk System

Joomla is a free content management system that serves as the core software backbone of NASA Talk. It is written in PHP and utilizes MySql for data management. Websites created with Joomla have a good amount of flexibility. The source code is open and may be modified by developers to fit their specific needs.

Presently, the NASA Talk website is running Joomla Core version 1.5.20 along with Mighty Extensions, a third party advanced management system to manage users, content, subscriptions, etc. Plugins for the site include the NASA and NASA Earth Observatory Images of the Day and Tweetboard. NASA Talk also has a development server.
Related Content

Discussion Board Assignments and Their Impact on Creating Engaged Learning Environments in Art History Online Courses
www.igi-global.com/chapter/discussion-board-assignments-their-impact/72110?camid=4v1a

Digital Games: Changing Education, One Raid at a Time.
Pavel Pivec and Maja Pivec (2011). International Journal of Game-Based Learning (pp. 1-18).
www.igi-global.com/article/digital-games-changing-education-one/50553?camid=4v1a

Shaping Perspectives on the “Culture of Disability”: Lessons from an Australian Online Role Play
Christine H. Kilham (2011). Teaching Cases Collection (pp. 114-140).
www.igi-global.com/chapter/shaping-perspectives-culture-disability/52463?camid=4v1a

Using Spatial Constructivist Thinking Theory to Enhance Classroom Instruction for Students with Special Needs
Prince Hycy Bull (2012). Communication Technology for Students in Special Education and Gifted Programs (pp. 66-81).
www.igi-global.com/chapter/using-spatial-constructivist-thinking-theory/55464?camid=4v1a