Activity-Related Incentives as Motivators in Open Innovation Communities

Kaspar Schattke, Technische Universität München, Germany
Jörg Seeliger, Technische Universität München, Germany
Anja Schiepe-Tiska, Technische Universität München, Germany
Hugo M. Kehr, Technische Universität München, Germany

ABSTRACT

Many companies are using open innovation projects to create new and innovative ideas. Individuals who engage in open innovation usually participate voluntarily and without monetary rewards. What motivates these individuals and how can their motivation be increased? In two studies, the authors identify activity-related incentives as crucial. The authors find that achievement-related incentives and, with some limitations, power-related incentives positively correlate with optimal motivation, flow experience, and self-reported behaviour; when voluntarily working with an open innovation software platform. The authors conclude that open innovation projects should focus on activity-related incentives to enhance participants’ motivation for open innovation and their flow experience.

Keywords: Achievement Motivation, Activity-Related Incentives, Flow Experience, Motivation, Open Innovation, Voluntary Participation

MOTIVATION FOR OPEN INNOVATION

Open innovation can be described as a self-organised, self-motivated, internet-based, and collaborative development and creation of innovation, which is closely related to the world of open source software developers (von Hippel, 2005). From this perspective, open innovation, in its most extreme form, would not even need an actual organisation, business, or company in order to function (Möslein & Neyer, 2009). At the same time, Chesbrough (2003, 2006) describes open innovation as the classical counterpart of closed innovation, where innovation takes place only in highly protected research and development (R&D) labs within companies without any contact to the outside world (Möslein & Neyer, 2009). Another term often used in this context is crowdsourcing, introduced by Howe (2006). Crowdsourcing includes voluntary participation from people

DOI: 10.4018/ijkbo.2012010102
with diverse backgrounds in various projects that can be distributed all over the world. Crowdsourcing is based on Web 2.0 technology and is not limited to innovation processes – it is much broader than open innovation.

In this article, we use the term open innovation as conceptualised by Chesbrough (2003, 2006). Accordingly, we see open innovation as an approach to creating new ideas, products, or services within organisations. In open innovation, innovative processes unfold beyond the reach of the research and development (R&D) department of a company. Open innovation includes customers, external partners, or non research-related departments of the company (Reichwald & Piller, 2006).

Möslein and Neyer (2009) distinguish between three main groups of innovators: (1) core innovators from the company’s R&D division, (2) peripheral innovators (including all employees from a company whose main tasks are not related to innovation), and (3) external innovators such as clients, user, or suppliers. When organisations start using open innovation, they often begin with integrating external innovators in their innovation processes. A typical example is open source software development – a special case of open innovation – such as the operating system Linux (Hertel, Niedner, & Herrmann, 2003) and the User-to-User-Support for the server software Apache (Lakhani & von Hippel, 2003). However, more and more companies have begun to use open innovation projects and integrate customers or other external innovators into the process of value creation beyond open source software (i.e., Bartl, Füller, Schmidt, & Rieger, 2010; van Delden, 2010; Steinhoff, 2009).

Neyer, Bullinger, and Möslein (2009) point out that besides including external innovators into the innovation process, it is very important to also focus on peripheral innovators within the company. Companies such as Siemens (Eberl, 2009), IBM (Bungart & Köhler, 2009), or Swarovski (Erler, Rieger, & Füller, 2009) have already implemented open innovation projects, which integrate peripheral innovators who often participate voluntarily and without monetary rewards (Schattke & Kehr, 2009). Accordingly, the general question of this article focuses on what motivates peripheral innovators to participate in open innovation projects and which incentives they perceive for doing so.

In the classical approach to motivation, the interaction between person and situation leads to motivation, which, in turn, leads to behaviour (Lewin, 1946; Rheinberg, 2008b). In this framework, the term person refers to individual differences, such as implicit motives, explicit motives, and perceived abilities (Kehr, 2004). A motive is a recurrent concern with a certain class of incentives, such as achievement-, power-, or affiliation-related incentives (McClelland, 1987). People with a high achievement motive strive for excellence. People with a high power motive strive for having impact or influence on others. Lastly, people with a high affiliation motive strive for establishing and maintaining positive relations with others (i.e., McClelland, Koestner, & Weinberger, 1989; Schattke, Koestner, & Kehr, 2011; Schultheiss & Brunstein, 2010).

The term situation incorporates stimuli, cues, and incentives provided by the environment, in particular achievement-, power-, and affiliation-related incentives.

The term motivation denotes the “activating orientation of current life pursuits toward a positively evaluated goal state” (Rheinberg, 2008b, p. 15). The compensatory model of motivation and volition distinguishes between three structural components of motivation, called affective preferences, cognitive preferences, and subjective abilities. When all three structural components are activated and aligned, one is optimally motivated and likely to experience flow (Kehr, 2004). The difference between motivation and motives is that “motivation” refers to a current state whereas “motive” refers to a relatively stable preference for certain classes of incentives. The arousal of a motive through fitting incentives leads to motivation (Rheinberg, 2008b). It is important to note that incentives can either be purpose-related (Heckhausen & Rheinberg, 1980) or activity-related (Rheinberg, 1989).
Related Content

Culture and Knowledge Transfer Capacity: A Cross-National Study
[www.igi-global.com/article/culture-knowledge-transfer-capacity/47390?camid=4v1a](www.igi-global.com/article/culture-knowledge-transfer-capacity/47390?camid=4v1a)

Risk Management: Strengthening Knowledge Management
[www.igi-global.com/chapter/risk-management-strengthening-knowledge-management/41873?camid=4v1a](www.igi-global.com/chapter/risk-management-strengthening-knowledge-management/41873?camid=4v1a)

Aligning Knowledge and Business Strategies within an Artificial Ba Context
[www.igi-global.com/chapter/aligning-knowledge-business-strategies-within/24958?camid=4v1a](www.igi-global.com/chapter/aligning-knowledge-business-strategies-within/24958?camid=4v1a)
A Framework for Synthesizing Arbitrary Boolean Queries Induced by Frequent Itemsets
[www.igi-global.com/article/framework-synthesizing-arbitrary-boolean-queries/77884?camid=4v1a](www.igi-global.com/article/framework-synthesizing-arbitrary-boolean-queries/77884?camid=4v1a)