Real-Time Data Quality Monitoring System for Data Cleansing

Cihan Varol, Sam Houston State University, USA
Henry Neumann, Sam Houston State University, USA

ABSTRACT

To assist business intelligence companies dealing with data preparation problems, different approaches have been developed to handle the dirty data. However, these data cleansing approaches do not have real-time monitoring capabilities. Therefore, business intelligence companies and their clients are not able to predict the final outcome before running all business process. This yields an extra cost for the company if the data are highly corrupted. Therefore, to reduce cost for these types of businesses, the authors design a framework that monitors the quality attributes during the data cleansing process. Moreover, the system provides feedback to the user and allows the user to restructure the workflow based on quality attributes. The main concept of the framework is based on client-server architecture that uses multithreading to allow real-time monitoring of the process. A child thread is dedicated to run and another is dedicated to monitor the processes and give feedback to the user. The real-time monitoring system not only displays the cleansing process done on the data set, but also estimates the risk propagation probabilities in the data cleansing process. De-duplication elimination, address normalization, spelling correction for personal names, and non-ASCII character removal techniques are employed.

Keywords: Business Intelligence, Business Process, Data Cleansing, Data Quality, Data Quality Monitoring, Risk Assessment

INTRODUCTION

Today, business intelligence companies are collecting large amounts of data from a number of sources. In such an environment, the quality of the data can be affected by a number of different causes that result in unnecessary expenditure for the companies. For example, the Data Warehousing Institute estimates that low-quality customer data cost U.S. businesses about $611 billion a year in excess postage alone (Eckerson, 2002). In a recent example, a pizza chain sending an offer through the mail to the top 20% of its customers missed its target by $0.5M because of bad customer data (Dravis, 2009). The cost of poor-data quality is not always measured in dollars. In 1986, NASA space shuttle Challenger’s solid rocket booster joint seals burst, leading to an explosion that killed seven people. NASA used a flawed decision-
making process to approve the launch of the shuttle, which was caused by incomplete and misleading information (Rogers, 1986).

As information has become one of the most important resources in an organization, data and data quality is receiving increased attention as an important and maturing field of management information systems. The Total Data Quality Management (TDQM) approach for systematically managing the data quality in organizations is an important paradigm in the information and data quality area (Wang, 1998). In 2002, the Massachusetts Institute of Technology launched the Information Quality Program (MITIQ) where researchers are developing and testing new knowledge in the data quality field as well as developing data quality benchmarking standards. The principles that have been driving the data quality field for more than 15 years are reflected in Wang et al. (1993), Madnick et al. (2009), Strong et al. (1997), and Kahn et al. (2002).

Organizations are increasingly interested in understanding and monitoring the quality of their information through data quality metrics and scorecards (Talburt & Campbell, 2006). In many of these organizations, data administrators (DA) are responsible for exploring the relationships among values across data sets (profiling), combining data residing in different sources and providing users with a unified view of these data (integrating), parsing and standardizing (cleansing), and monitoring of the data. Employing only the data administrators for intelligent business process can lead to the following problems (Varol & Bayrak, 2008):

- The outcome can be error-prone;
- Different selections may be provided for the same job by different DAs;
- A DA may not know to reuse past solutions developed by other DAs;
- The process is labor-intensive. It can take a significant amount of time to produce results.

Problems with the quality of data are driving the development of data quality tools that are designed to support and simplify the data cleansing process. Although there are a few open-source data quality tools available, a majority of them are created by commercial companies in order to address the customers’ needs (see Goasdoue et al., 2007; Barateiro & Galhardas, 2005, for an exclusive list). These commercial business process tools are based on workflow structures, where a number of different functions work consecutively or in parallel one after another. Most of these tools are capable of profiling, integrating, and cleansing the data.

Data cleansing is one of the business intelligence practices conducted by variety of companies. These business intelligence companies charge a fee for each cleansing technique applied to the data set. However, clients would like to assess the quality of the original data and the possible outcome before allocating large amounts of money for cleansing purposes. Moreover, these tools lack real-time data process monitoring capabilities. In other words, the tools do not reflect the results of each cleansing process in real-time. Ideally, they should provide real-time checking against established business rules and detect when the data exceed the pre-set limits. They should also provide capabilities to recognize immediately and correct issues before the quality of the data declines.

In detail, being able to track the data cleansing process in real-time will have these advantages (Cardoso, 2004; Bethem et al., 2002):

- More timely resolution of data
- Reduce subjectivity in data quality interpretations
- Monitoring the system from business intelligence perspective: while fulfilling the customer expectations, the designed model must be constantly monitored throughout its life cycle to assure that both the initial business requirements and the targeted objectives are satisfied. When undesired metrics are identified or threshold values are reached, the real-time monitoring system allows for adaptations of new strategies or the abortion of the process.
A Systematic Approach for Business Data Analytics with a Real Case Study

www.igi-global.com/article/a-systematic-approach-for-business-data-analytics-with-a-real-case-study/132800?camid=4v1a